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Intracavernous administration of bone marrow
mononuclear cells: a new method of treating
erectile dysfunction?
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Abstract

While PDE5 inhibitors have revolutionized treatment of ED, approximately 30% of patients are non-responsive. A
significant cause of this is vascular and smooth muscle dysfunction, as well as nerve atrophy. Autologous
administration of bone marrow mononuclear cells (BMMC) has been performed in over 2000 cardiac patients
without adverse effects, for stimulation of angiogenesis/regeneration. Despite its ease of access, and dependence
on effective vasculature for function, comparatively little has been perform in terms of BMMC therapy for ED. Here
we outline the rationale for use of autologous BMMC in patients with ED, as well as provide early safety data on
the first use of this procedure clinically.
Introduction
Erectile responses require a coordinated increase in ar-
terial inflow, which originates from the pudendal arter-
ies, relaxation of the corporal smooth muscle, and
inhibition of venous outflow [1,2]. Key to this response
is production of nitric oxide (NO) from endothelial cells
and nonadrenergic noncholinergic (NANC) postgangli-
onic parasympathetic neurons, as well as responsiveness
to this. NO binds to, and activates, the enzyme guanylate
cyclase, which in turn catalyzes the generation of cGMP
from GTP. As a result, cGMP induces a cascade of sig-
nals in the smooth muscle cells resulting in relaxation
[3]. Breakdown of cGMP in the cavernosal tissue is me-
diated by PDE-5. Increasing the duration of NO signaling
by preventing cGMP breakdown is the main mechanism
of action for the successful PDE-5 inhibitor class of drugs
which currently are used as first-line treatment of ED [4].
Interestingly, recent studies have shown that these drugs
have other beneficial effects such as stimulation of bone
marrow endothelial progenitor cell function [5-9], inhib-
ition of smooth muscle cell apoptosis [10,11], preserva-
tion/restoration of function in post-prostatectomy settings
[12,13] and activation of mesolimbic dopaminergic neu-
rons in the CNS to promote sexual behavior [14].
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Unfortunately, a significant number of patients are re-
sistant to effects of PDE5 inhibitors [15]. Major factors
associated with this include atherosclerosis, nerve dam-
age and smooth muscle atrophy [16]. Several approaches
have demonstrated some promise in the improvement of
responsiveness to PDE5 inhibitors including propionyl-L-
carnitine [17,18], intracavernous PGE1 [19], and testoster-
one gel [20,21]. However these studies are early and do
not address the underlying biological cause in many of the
situations of ED. Since the majority of ED cases appear to
be a manifestation of systemic atherosclerotic disease
[22,23], and various forms of stem cell therapy have shown
some efficacy in other manifestation of atherosclerotic dis-
ease [24-35], the possibility of applying such regenerative
approaches to ED has been considered by investigators in
animal models [36-48].
Circulating endothelial progenitor cell
dysfunction in ED
Atherosclerosis and endothelial dysfunction of the penile
microvasculature is one of the major causes of ED. This
is particularly relevant since the penile arteries have the
smallest diameter of the vascular network and thus are
the most sensitive to these changes [49]. Therefore in
order to develop means to treat ED, it is important to
understand how the vasculature self-renews itself. The
bone marrow serves as a continuous supply of
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:Thomas.ichim@gmail.com
http://creativecommons.org/licenses/by/2.0


Ichim et al. Journal of Translational Medicine 2013, 11:139 Page 2 of 10
http://www.translational-medicine.com/content/11/1/139
circulating endothelial progenitor cells (EPC) for the sys-
temic vasculature. The concept of endothelial renewal
by circulating cells was described by Asahara et al who
demonstrated that cells expressing VEGFR-2 and CD34
were capable of incorporating into sites of active angio-
genesis induced by wire injury or ischemia. The authors
of the study found comparable cells in the human sys-
tem [50]. Subsequent studies have shown that several
subtypes of circulating EPC exist, with some capable of
giving rise to early colonies of endothelial cells in vitro
and others giving rise to late colonies [51]. In general,
the majority of studies assessing EPC function in
humans detect the cells using a combination of the
CD34, AC133, and VEGFR-2 markers, although both the
early and late outgrowth populations of cells are present
in this phenotypic subset [52].
Increases in circulating EPC have been described in

studies of acute inflammation such as myocardial infarc-
tion and stroke [53-57]. It has been demonstrated that
tissue injury causes site-specific upregulation of chemo-
tactic factors such as stromal derived factor (SDF)-1,
which in turn mobilize EPC from bone marrow com-
partments into the site of injury to participate in forma-
tion of new blood vessels [58]. Supporting this, positive
correlations have been found between post-stroke in-
crease in circulating EPC and better prognosis [59].
Conversely, basal low levels of EPC predict cardiovascu-
lar events [60]. Numerous studies have demonstrated in
animal models that administration of exogenous EPC in-
creases vascular repair. This has been shown using
in vitro generated EPC, or bone marrow as a source of
EPC in myocardial infarct [61,62], stroke [63], lung in-
jury [64-66], liver failure [67-69], and endothelial injury
atherosclerotic models [70,71]. Furthermore, administra-
tion of growth factors that stimulate mobilization of
bone marrow stem cells and EPC have demonstrated
therapeutic benefit in animal models of ischemic disease
[72,73] as well as endothelial damage [74]. Clinical trials
administering EPC or bone marrow as a source of EPC
for cardiovascular conditions [28,75-77], have demon-
strated some therapeutic benefit, although work is on-
going. Indeed various other factors may be needed to
augment efficacy. For example, it was recently discov-
ered that testosterone levels correlate with ability of EPC
to function [78,79]. Specifically, castrated mice possess
marked deficiencies in ability to undergo spontaneous
angiogenesis in responses to hindlimb ischemia [80]. In
the cardiac studies testosterone levels were not tested,
and it is believed that a significant segment of the older
population has a deficiency in testosterone [81].
In states of chronic inflammation, EPC activity is de-

creased. Specifically, conditions such as diabetes [82-86],
hypercholesteremia [87-92], obesity [93,94] and cardio-
vascular disease [95,96] all are associated with decreased
circulating EPC compared to controls. Interestingly, in
volunteers that do not suffer from cardiovascular disease
but have cardiovascular disease risk factors as assessed
by the Framingham risk factor score, a negative correlation
is found between cardiovascular risk and EPC function.
Unhealthy lifestyle such as smoking also decreases EPC. In
a study by Kondo et al undetectable levels of EPC were
found when colony formation was assessed, and signifi-
cantly reduced levels of cells possessing EPC phenotype
were found in smokers compared to healthy controls [97].
Smoking cessation for 4 weeks was capable of increasing
EPC numbers, whereas when subjects restarted smoking
after the 4 weeks, EPC levels dropped again.
Since ED appears to be one of the early manifestations

of systemic cardiovascular disease, it is not surprising that
ED patients possess a deficiency in circulating EPC. In a
study by Baumhäkel et al, numbers of of CD34(+)/KDR(+)
and CD133(+) cells were assessed in 119 coronary artery
disease patients. Prevalence of ED, as assessed by the
KEED questionnaire was 59.7% in this population. Low
levels of CD133 cells were identified as an independent
risk factor for ED when adjustments for age, diabetes,
hypertension, BMI, smoking, LVEF, use of statins and
lower urinary tract symptoms, and prior coronary inter-
vention [98]. A subsequent study by Esposito et al in 60
otherwise healthy overweight men of which 30 suffered
from ED and 30 did not, revealed a significant direct cor-
relation between circulating CD34(+)KDR(+) cells and
erectile function as assessed by the International Index of
Erectile Function (IIEF) questionnaire [99]. Foresta et al
utilized high resolution echo color doppler to quantify
penile atherosclerosis associated with ED by measuring
the intima media thickness [IMT] in the penile vascula-
ture before and after intracavernous alprostadil injection.
Twenty patients with ED and 15 controls were recruited
for the study. A progressive reduction of circulating EPC
with the severity of cavernous artery atherosclerosis was
found [100].
Given the low number of EPC in heart failure patients, it

may be reasonable to believe that there is a diminished re-
generative capacity of the endothelium in the cavernousum.
Thus administration of cells possessing EPC function may
be useful.

Angiogenic cytokines and ED
Cytokines play a critical role in coordinating the process
of angiogenesis and vascular renewal by EPC. SDF-1 is a
fundamental factor in stimulation of angiogenesis, which
functions to attract EPC to areas of injury [101]. Condi-
tions of reduced blood flow or hypoxia induce activation
of HIF-1 alpha, which in turn stimulate expression of
SDF-1 [102]. SDF-1 administration has been demon-
strated to augment activity of endogenous EPC and pro-
mote neovascularization in the cardiac setting [103]. On
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the other hand, various cytokines within the corpus cav-
ernosum are needed for EPC to integrate and form new
blood vessels. In ED it has been found that levels of angio-
genic cytokines such as VEGF and FGF are reduced. In a
rat model of ED induced by hypercholesteremia, a nega-
tive correlation between VEGF, angiopoietin-1, and
angiopoietin-2 and erectile function was observed at the
gene and protein level in cavernous tissue [104]. In a
rabbit hypercholesteremia model, reduction in FGF-2 is
observed in the cavernous tissue, and administration of
this protein intracavernously results in a VEGF dependent
restoration in function [105]. A possible functional correl-
ation between decreased VEGF expression in the corpus
cavernosum and ED is suggested in a study which showed
rabbits fed a high cholesterol diet had a decrease in VEGF
expression before onset of ED [106]. While in general, it
appears that the process of aging decreases VEGF expres-
sion in the penile tissue [107,108], other factors associated
with ED such as hyperglycemia [108], androgen deficiency
[109], and chronic ischemia [110] appear to further cause
decrease in VEGF expression.
Given that cellular therapy evolved after cytokine/gene

therapy, numerous studies have been conducted assessing
efficacy of administration of cytokines in models of ED.
The rationale being that not only would transfer of agents
such as VEGF augment neoangiogenesis and endothelial
rejuvenation, but that they would also prevent apoptosis
of endothelial cells as well as neurons in the cavernosum.
Byrne et al. reported that a single intracavernous injection
of VEGF protein or systemic injection was capable of re-
storing to normal in vitro smooth muscle relaxation in
cholesterol-fed rabbits. Smooth muscle relaxation induced
by both acetylcholine, which is endothelium dependent
and sodium nitroprusside, which is NO mediated, was re-
stored. Interestingly the authors found an increase in
smooth muscle content of the cavernosum in animals that
received intracavernous injection of VEGF but not sys-
temic administration [111]. A previous preliminary study
by the same group reported similar effects of VEGF when
administered weekly for 4 weeks [112]. Subsequent studies
have demonstrated that viral vector administration of
VEGF is capable of restoring erectile function in testoster-
one deficient models of ED [113]. The effects of VEGF ap-
pear to be therapeutic in a variety of models of ED, for
example Park et al demonstrated improvement in the aged
rat model [114], Dall’Era et al demonstrated effects in the
diabetes model [115], and Hsieh et al demonstrated effi-
cacy in a crush-injury model [116].
Microarray analysis of rats with penile hypocirculation

induced by pudendal artery ligation revealed that VEGF
administration into the corpus cavernosum is associated
with upregulation of eNOS and iNOS genes at 6 and 24
hours post administration [117]. Additional mechanisms
of VEGF on ED include upregulation of eNOS function
by phosphorylation on a specific serine residue [118].
Other mechanisms of VEGF on erectile function include
stimulation of anti-apoptotic genes such as bcl-2 in the
cavernosum [119], and modulation of the insulin-like
growth factor system and sex hormone receptors [120].
Other angiogenic growth factors have been demon-

strated to increase erectile function in animal models. For
example, FGF-2, a heparin-binding growth factor has been
demonstrated to increase smooth muscle content and pre-
vent histological changes associated with ED in a hyper-
cholesterolemia rabbit model subsequent to systemic
administration [121]. Interestingly, therapeutic benefit was
associated with augmentation of VEGF expression. Subse-
quent studies have demonstrated that local FGF-2 admin-
istration is capable of augmenting vasoreactivity of the
corpus cavernosum in a similar model system [122]. IGF-
1 is known to act as an anti-apoptotic molecule in several
systems and stimulates angiogenesis, in part through in-
duction of VEGF and VEGF receptor expression [123].
Suppression of IGF-1 production at a local level is found
in uremia induced ED in animal models [124], and reduc-
tion at a systemic level is associated with aging and obesity
[125,126]. The possibility that IGF-1 may be therapeutic
in ED was suggested by studies in which regeneration of
penile nerves was associated with upregulation of IGF-1
in a cavernous neurotomy model [127]. Administration of
IGF-1 via adenoviral delivery into the penis was demon-
strated to improve erectile function and smooth muscle
mass in a streptozotocin-induced model of diabetes asso-
ciated ED [128]. Furthermore, these date were confirmed
in an age-associated rat model of ED, in which it was
demonstrated that the effects of IGF-1 were mediated at
least in part by stimulation of eNOS synthesis as well as
augmented concentrations of cGMP [129].
Thus while it appears that VEGF, FGF-2 and IGF-1 are

potential candidates for stimulation of cavernosum re-
generation/rejuvenation therapy, trials using these agents
in other cardiovascular conditions have yielded poor re-
sults [130]. Furthermore, although gene therapy into the
corpus cavernosum has been demonstrated to possess
promising safety data in early human trials [131], little
work to our knowledge is being performed in this space.
Cellular therapy possesses the potential advantages of:
a) production of a regulated “symphony of therapeutic
cytokines” based on the need of the local environment;
b) relatively lower risk level, especially in autologous,
non-expanded settings; and c) the ability of the cells to
differentiate into effector cells. Therefore we will review
previous work performed on cell therapy for ED.

Previous cellular therapy approaches to ED
Bone marrow stem cells have been used for over 4 decades
in the area of hematopoietic stem cell transplantation.
Stimulation of angiogenesis using this cell population has
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been performed in animal models of ischemia, as well as
in clinical trials [132]. Kendirci et al used bone marrow
cells that were isolated for expression of the p75 nerve
growth factor receptor using magnetic activated cell
sorting. They chose this population based on possible en-
hancement of neurogenic potential. Intracavernous admin-
istration of these cells into a rat bilateral cavernous nerve
crush injury model was performed. At 4 week follow up,
improvement in erectile function as assessed by mean
intracavernous-to-mean arterial pressure ratio and total
intracavernous pressure was assessed. Significant improve-
ments were observed in animals receiving the p75 selected
cells as compared to those receiving an equal concentra-
tion of bone marrow derived multipotent stromal cells,
fibroblasts, or saline. Significantly higher levels of FGF-2
were found in the cavernosum of animals receiving the
p75 selected cells [38]. To our knowledge this is the only
animal experiments that utilized bone marrow derived
cells without expansion in vitro.
The possibility of using mesenchymal stem cells in

the treatment of ED is enticing not only because these
cells are known to secrete various growth factors that
are beneficial in ED such as IGF-1 [133-135], VEGF
[136], and FGF-2 [137], but also because of their anti-
inflammatory activities [138], as well as possibility of dif-
ferentiating into tissue relevant to the penile architecture
[139]. To assess whether bone marrow derived MSC had
a therapeutic effect on diabetes induced ED, Qiu et al
performed intracavernous administration of these cells.
Four weeks after administration, the ratio of intracavernous
pressure and mean arterial pressure (ICP/MAP ratio), as
well as smooth muscle and endothelial cell compartment
was significantly upregulated compared to controls. Cell
tracking experiments revealed that the MSC were retained
for at least 4 weeks post injection and showed expression
of endothelial and smooth muscle cell markers, suggesting
the possibility of transdifferentiation [37]. A subsequent
study examined long term effects of MSC administration
via the intracavernous route in aged rats. The study found
that the mean cavernous cGMP levels after 3 and 4 months
of MSCs transplantation were increased compared with
those after 3 or 4 weeks, which were in turn higher than
controls. Cavernous tissue ICP measurement showed sig-
nificant increase in MSCs transplanted groups compared
with the controls, which was more significant in the long-
term follow up [40]. This suggests that some of the thera-
peutic effects of regenerative therapy may be observed in a
more delayed setting as opposed to some of the previously
mentioned gene therapy approaches. Similar therapeutic
effects were observed with muscle derived MSC in the aged
rat model, however long term follow-up was not performed
[44]. Given that MSC may be used clinically in an allogen-
eic model, a xenogeneic model of human MSC into
immune competent rats was performed. Administration of
an immortalized human MSC clone into the cavernosum
of Sprague Dawley rats resulted in differentiation into
endothelial and smooth muscle cells [46]. Non-invasive
imaging studies by the same group reported that human
MSC may be found up to 12 weeks post injection in the
cavernosum of rabbits and rats [45]. In order to augment
therapeutic efficacy of MSC, genes for VEGF and eNOS
were transfected into MSC for treatment of diabetes and
age-associated ED, respectively. In both cases significant
improvements in therapeutic efficacy were observed when
gene transfected MSC were used in comparison to MSC
alone [36,47].
Adipose tissue derived stromal vascular fraction (SVF)

cells represent a potent source of EPC, MSC and hema-
topoietic stem cells that has been used in clinical pilot trials
and is part of veterinary medical practice in the USA [140].
The MSC component from SVF is postulated to possess
some unique advantages to bone marrow MSC, such as
augmented angiogenic activity, however this is controversial
[43]. Several studies have used adipose derived mesenchy-
mal stem cells that were in vitro expanded for the treatment
of ED in the cavernosal nerve injury model [39], the hyper-
lipidemia model [41], and the streptozotocin induced dia-
betes model of ED [42]. Unfortunately it is still not clear
which stem cell source is better since back to back experi-
ments have not been performed. Given the potent angio-
genic characteristics of the endometrial-derived MSC,
termed endometrial regenerative cells (ERC) [141], it may
be relevant to assess therapeutic effect of these cells in
models of ED.
Clinical use of stem cells in treatment of ED has been

reported by Bahk et al from Korea who treated 7 pa-
tients with diabetes associated ED which was unrespon-
sive to medication for at least 6 months with an average
of 1.5 × 10(7) cord blood mononuclear cells injected
intracavernously. Three additional patients with similar
characteristics were used as controls [142]. No treatment
associated abnormalities were reported despite the allo-
geneic nature of the cells in absence of immune suppres-
sion. One month after treatment, morning erections
were regained in 3 participants. By the third month post
treatment 6 of the 7 patients had regained morning erec-
tions. In all patients rigidity increased as the result of
cord blood administration, but was not sufficient for
penetration. When the patients were administered PDE5
inhibitor before coitus, 2 achieved penetration and experi-
enced orgasm, and maintained for more than 6 months;
however, 1 participant could not achieved penetration at
ninth month. Interestingly, an increase in sexual desire
was reported in 6 of the 7 patients. No improvements
were observed in any of the 3 control patients.
Overall these studies support: a) the rational for use of

various adult stem cells in the treatment of ED, and b)
the preliminary human feasibility.
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Bone marrow mononuclear cells
Bone marrow mononuclear cells have been used as a stem
cell source for over 40 years in the field of hematological
transplantation [143]. Non-hematopoietic uses of bone
marrow mononuclear cells have historically included
transplantation for post infarct recovery of the heart. The
rationale behind this is that bone marrow cells contain an-
giogenic cells [144], which support production of new
blood vessels and accelerate healing of the infracted scar.
Chimeric studies demonstrated a critical role of the c-kit
receptor in that bone marrow from c-kit mutant mice was
not able to reverse pathological remodeling and inhibit in-
farct size, post infarct [145]. Additionally, it is believed
that bone marrow derived cells are capable of directly dif-
ferentiating into myocardial tissue [146]. This rationale
stimulated the first report of bone marrow administration
for treatment of post infarct cardiac damage.
In 2001 Strauer et al [147], reported a case report of a

46-year-old man who suffered a transmural infarction as
a result of an occluded anterior descending branch of
the left coronary artery. Six days after the infarct and
subsequent to angioplasty and stent placement, the pa-
tient was administered 1-2 × 10(7) bone marrow mono-
nuclear cells via a percutaneous transluminal catheter
placed in the infarct-related artery. At 10 weeks after the
stem cell transplantation the infarct area was diminished
from 24.6% to 15.7% of left ventricular circumference,
while ejection fraction, cardiac index and stroke volume
were increased by 20-30%. Exercise-induced end dia-
stolic volume was decreased by 30% and a similar
decrease in mean pulmonary capillary pressure was ob-
served. A subsequent study of 9 post infarct patients
receiving autologous bone marrow into infarct related
artery revealed improvements in ejection fraction and
diminished improved regional wall motion in the infarct
zone at 4 month follow-up. Additionally at the same
time point a reduction in end-systolic left ventricular
volumes. In the historical control group no significant
change in ejection fraction, nor end-systolic volumes
was observed [148]. Although larger double blind trials
have reported mixed results [149-151], the overall con-
sensus is that bone marrow administration post infarct
induces a mild benefit in terms of ejection fraction and
reduction in pathological remodeling [152,153].
In addition to post-infarct healing, bone marrow

mononuclear cells have been extensively used for the
direct stimulation of angiogenesis. In the cardiac arena, one
of the first stem cell uses was reported by Hamano et al in
2001 [154], who used autologous bone marrow implan-
tation into the ischemic area of patients with ischemia heart
disease undergoing coronary artery bypass surgery. At 1
year follow-up 3 of the 5 patients treated reported objective
functional improvement with angiogenesis visualized at the
points of injection by imaging [154]. Subsequent studies
have been conducted demonstrating benefit of direct in-
tramyocardial injections of bone marrow mononuclear
cells. Beeres et al [155]. reported improved exercise cap-
acity, ejection fraction, and quality of life at 3 and 6 month
timepoints after autologous bone marrow therapy in severe
angina. A 50-patient double blinded study of myocardial
ischemia patients who were non-responsive to medical
intervention and ineligible for coronary revascularization
demonstrated a statistically significant improvement in car-
diac perfusion using autologous bone marrow mononuclear
cells implanted intramyocardially [156].
Critical limb ischemia (CLI) is a severe form of periph-

eral artery disease whose only treatment is percutaneous
or surgical revascularization for patients who have favor-
able anatomy. Patients who do not, usually require ampu-
tation. Formation of collateral blood vessels surrounding
the area of occlusion is a well documented phenomenon
in patients with CLI (reviewed in ref [157]) and is believed
to be caused by circulating stem/progenitor cells that
cause localized angiogenesis. Indeed because of these pre-
vious observations, investigators have questioned whether
the process of endogenous angiogenesis could be aug-
mented by intramuscular implantation of autologous bone
marrow mononuclear cells into the ischemic limb. The
first clinical trial using this procedure was reported by
Tateishi-Yuyama et al. who reported a statistically signifi-
cant increase in perfusion, walking distance, and oxygen-
ation of ischemic legs as compared to baseline in one
group, and in another study group as compared to injec-
tion of peripheral blood mononuclear cells [158]. Subse-
quent groups have repeated the finding that autologous
bone marrow mononuclear cells have a therapeutic effect
on angiogenesis in the ischemic leg. Nizankowski et al
reported reduction of pain and improved perfusion in 10
patients with Fountaine IV class CLI [159]. A similar open
label study in 12 CLI patients demonstrated improve-
ments in resting ankle-brachial pressure index (ABI),
arterial oxygen saturation (SaO(2)), pain-free walking time
and rest pain scale evaluation [160]. A larger, 51 patient
study, demonstrated improvement in a mean Rutherford
category of 4.9 at baseline to 3.3 at 6 months, as well as re-
duction in analgesics consumption by 62%. Perfusion was
increased as detected by ankle brachial index and transcu-
taneous oxygen. Furthermore, total walking distance im-
proved in nonamputees from zero to 40 m [161].
Thus the process of systemic or local administration of

autologous bone marrow mononuclear cells has been
shown to have therapeutic effects in ischemia associated
heart failure and limb dysfunction. In other conditions
such as liver failure [162] and stroke [163], studies have
shown this source of cells mediates therapeutic effects,
possibly in part by stimulation of angiogenesis [164].
Given that bone marrow mononuclear cells can be ex-

tracted and concentrated in FDA-approved closed system
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devices, and are already being used under the practice of
medicine for a variety of indications, we sought to explore
the safety and feasibility of intracavernous administration of
these cells in a patient suffering from erectile dysfunction.

Case report
A 35 year old patient presented to us with a history of
erectile dysfunction unresponsive to oral PDE5 inhibi-
tors. The patient was a smoker and had a history of
hypercholesteremia, marginal effects from intracorporal
PGE1 (Caverject) administration, 2 years ago, but as of
6 months, the treatment had no effect. Psychogenic ED
was discounted based on 2 independent nocturnal penile
tumescence (NPT) tests, which revealed abnormal find-
ings. Normal was defined as having at least 1 episode of
nocturnal erection of at least 10 minutes duration with a
2-cm increase in tumescence of the tip and 3-cm in-
crease in tumescence of the base, together with 70% ri-
gidity in the tip and base using the RigiScan monitoring
[165]. Upon discussing with his urologist, the patient
began seeking penile prosthesis implant. After being
explained and understanding the experimental nature of
the proposed procedure, the patient signed informed
consent. The procedure was approved by the relevant in-
stitutional review board. The patient was in otherwise
good health. Tumor markers AFP, PSA, CA19-9, and
CEA, hematology, biochemistry panel and coagulation
were unremarkable. CT scans of the chest, ultrasound of
the abdominal area, and fecal occult test were also
unremarkable.
The patient was administered one tablet of Vocodin

(7.5 mg hydrocodone) and one tablet of Xanax (1 mg)
30 minutes before the procedure. Local lidocaine was
applied topically at the area of bone marrow puncture.
A total of 60 ml of bone marrow aspirate was obtained
and processed in a closed-system bone marrow concen-
tration device. Bone marrow mononuclear cells were
concentrated to a volume of 2 ml, with 1 ml administered
into each cavernousal body using a 25 gauge syringe. A
tourniquet was placed around the base of the penis during
the injection procedure and held for 5 minutes to allow
for maximal retention
No immediate injection-associated adverse events were

noted. The patient reported a morning erection 2 days
after cell administration. Although angiogenesis could not
occur during this short time period, the possibility of bone
marrow released nitric oxide stimulating erections via
vasodilation may be postulated [166]. Three weeks after
treatment, the patient reported erection strong enough for
penetration, but did not have ability to sustain the erection
until orgasm. At three month follow-up the patient re-
ported having intercourse until orgasm several times and
a marked increase in morning erections. Importantly, no
adverse effects or ectopic tissue formation was observed
at the 3, 12 and 18 month follow-up. At last visit, 18
months after procedure, the patient still reported im-
proved sexual function as compared to prior to treatment.

Conclusion
Bone marrow stem cell therapy has demonstrated thera-
peutic effects in clinical trials of heart failure and ad-
vanced peripheral artery disease. The rationale for bone
marrow stem cell therapy of the penis in patients with
erectile dysfunction is strong given that: a) The penile
vasculature is the most endothelial-rich anatomical region
of the body, thus even a small amount of therapeutic cells
are likely to be incorporated; b) Blood flow in the flaccid
penis is slower compared to systemic circulation, thus
allowing for superior retention; and c) ease of injection
given its external location. From an ethical perspective, the
procedure of penile prosthesis implantation requires de-
struction of the cavernous, thus making it irreversible. The
feasibility of the injection procedure, the fact that no ad-
verse effects were noted, and the ease of the procedure,
supports expanded clinical trials using this intervention.
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