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Abstract 

Background Alpha-emitter radiopharmaceutical therapy (αRPT) has shown promising outcomes in metastatic 
disease. However, the short range of the alpha particles necessitates dosimetry on a near-cellular spatial scale. Cur-
rent knowledge on cellular dosimetry is primarily based on in vitro experiments using cell monolayers. The goal of 
such experiments is to establish cell sensitivity to absorbed dose (AD). However, AD cannot be measured directly and 
needs to be modeled. Current models, often idealize cells as spheroids in a regular grid (geometric model), simplify 
binding kinetics and ignore the stochastic nature of radioactive decay. It is unclear what the impact of such simplifica-
tions is, but oversimplification results in inaccurate and non-generalizable results, which hampers the rigorous study 
of the underlying radiobiology.

Methods We systematically mapped out 3D cell geometries, clustering behavior, agent binding, internalization, 
and subcellular trafficking kinetics for a large cohort of live cells under representative experimental conditions using 
confocal microscopy. This allowed for realistic Monte Carlo-based (micro)dosimetry. Experimentally established surviv-
ing fractions of the HER2 + breast cancer cell line treated with a 212Pb-labelled anti-HER2 conjugate or external beam 
radiotherapy, anchored a rigorous statistical approach to cell sensitivity and relative biological effectiveness (RBE) esti-
mation. All outcomes were compared to a reference geometric model, which allowed us to determine which aspects 
are crucial model components for the proper study of the underlying radiobiology.

Results In total, 567 cells were measured up to 26 h post-incubation. Realistic cell clustering had a large (2x), and cell 
geometry a small (16.4% difference) impact on AD, compared to the geometric model. Microdosimetry revealed that 
more than half of the cells do not receive any dose for most of the tested conditions, greatly impacting cell sensitivity 
estimates. Including these stochastic effects in the model, resulted in significantly more accurate predictions of surviv-
ing fraction and RBE (permutation test; p < .01).

Conclusions This comprehensive integration of the biological and physical aspects resulted in a more accurate 
method of cell survival modelling in αRPT experiments. Specifically, including realistic stochastic radiation effects and 
cell clustering behavior is crucial to obtaining generalizable radiobiological parameters.
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Background
The overall survival of patients with early-stage can-
cer has improved significantly over the past decades, 
however the prognosis of cancer patients with distant 
metastases remains abysmal [1, 2]. Radiopharmaceuti-
cal therapy with alpha-emitters (αRPT) is increasingly 
being recognized as a potentially highly effective and safe 
patient treatment modality for these types of cancers [3, 
4].

The highly efficacious nature of alpha radiation can be 
attributed to its high linear energy transfer (LET), which 
results in dense and complex DNA damage, resulting in 
a high probability of cell death [5]. However, the associ-
ated short range (50 µm—100 µm, on the order of a few 
cell diameters) and sparse radiation field at typical activ-
ity concentrations greatly complicate accurate dosimetry 
in patients, as this would require knowledge of the iso-
tope’s distribution at the (sub-)cellular spatial scale. As a 
consequence, much about the radiobiological response 
to αRPT remains unknown and current αRPT treatment 
planning is rarely based on absorbed dose (AD). It is very 
likely that this results in suboptimal dosing and patient 
selection [6, 7].

To better characterize the radiobiological response, 
αRPTs are often studied in  vitro using  cell monolay-
ers. This allows for the study of agent’s kinetics and cell 
sensitivity in isolation. Current dosimetric models for 
these types of experiments commonly idealize cells as 
spheroids placed in a regular grid (geometric model). 
A uniform activity which is localized in certain discrete 
compartments is assumed and AD averages (e.g., s-val-
ues) are used for survival modelling.

An example of this is the current MIRD Cell model, in 
which cells are assumed to be spherical, identical, and 
are placed in a regular grid [8]. However, it has been sug-
gested in both theoretical [9–14], as well as experimental 
work [14–17] that cell geometry as well as spatial (intra-
cellular) isotope distribution can have a significant impact 
on AD for short-ranged particle emissions. Recent efforts 
have been undertaken to more realistically model groups 
of cells of different size, geometry, clustering density and 
associated activity [10]. However, the chosen geometric 
parameters and assumed cell-specific uptake kinetics 
of such a model need to sufficiently match the true bio-
logical context of the modelled experiments in order to 
allow generalization of these results (e.g., to in vivo or in 
patient).

Furthermore, given the stochastic nature of the sparse 
radiation fields typically associated with αRPTs, the use 

of microdosimetry is recommended [18, 19]. The statis-
tical variability in cellular AD -which often includes a 
fraction of cells receiving no AD at all- is thought to be 
significant at the small spatial scale and associated low 
levels of activity of individual cells [20, 21]. If this sta-
tistical variability is high, then using an average AD or 
s-value, rather than a microdosimetric approach, would 
lead an underestimation of cell sensitivity to AD.

To what extent these model aspects are truly necessary 
for accurate cell sensitivity estimates remains unclear.

The purpose of this study was to systematically meas-
ure the individual cell geometry, clustering behavior, and 
αRPT agent kinetics for a large number of cells under 
representative experimental conditions, in order to get 
the most accurate estimates of AD and its microdosimet-
ric variability on a cellular level. Experimental cell sur-
vival studies were used to fit cell sensitivity parameters. 
These data were then compared to simpler geometric 
models. This allowed for the assessment of which model 
aspects are crucial for accurate radiobiological modelling 
of cell survival assays after treatment with αRPT.

Methods
The specific AD distributions and alpha particle track 
lengths through the nucleus were calculated for real cell 
geometries and antibody (Ab) kinetics under experi-
mental conditions. The cell geometries and Ab kinetics 
were measured using high-resolution dynamic 3D con-
focal microscopy. For each time frame, the full phys-
ics of the isotope decay was simulated in a Monte Carlo 
framework. To this end, the nuclei were segmented 
and imported into a custom-build GEANT4 program, 
together with the measured Ab spatial distribution for 
each time frame. Simulated events were saved individu-
ally, which enabled efficient microdosimetry calculations 
for each cell, source location, time frame and Ab concen-
tration. These results, together with previously published 
cell survival data, were used to model the likelihood of 
survival on a single-cell level. The results for this detailed 
model were compared to the results of simpler geometric 
models.

Data acquisition
Cell line and fluorescent staining
The experimental conditions of a previous in  vitro cell 
survival experiment were replicated for this study [22]. 
The cell line which was used, is a syngeneic murine rat 
HER2/neu expressing cell line which is a mouse cell line 
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that expresses rat HER2/neu receptors [23, 24]. The cells 
were cultured in the appropriate media, but the base 
media was changed to a non-phenol red RPMI1640. The 
cells were seeded in thin bottomed well plates, optimized 
for high-resolution imaging (Ibidi µ-Slide 2 well) the day 
before imaging experiments, to allow for adherence.

A relevant HER2/neu monoclonal antibody, 7.16.4 
(BioXCell) was labelled with the Alexa Fluor 488 label-
ling kit (Thermo Fisher Scientific). Cell nuclei were coun-
ter stained with Hoechst 33342 20  min before imaging 
started. A separate imaging batch of cell culture media 
was stained with biologically inert dextran (10,000 MW, 
neutral; Thermo Fisher Scientific), labelled with Texas 
Red at a concentration of 2.5 µM. This media (“negative”) 
stain provided an outline of the individual cell geometries 
and was added to the incubation wells only moments 
before imaging started.

Data scans
Imaging was performed on live cells with a Zeiss LSM 
880 using a 63 × PlanApo oil emersed objective. The 
voxel size was 0.101 × 0.101  µm in-plane and 0.159  µm 
in the vertical direction. Laser power and filter settings 
were optimized once on a test batch of cells and kept 
constant for all subsequent experiments. The environ-
mental chamber was kept at 37 °C with 5%  CO2.

Time lapse acquisitions at 12 frames per hour were 
made for antibody incubation times for up to 120  min. 
All other acquisitions were static.

Photobleaching correction
Photobleaching in time lapse acquisitions was modelled 
with a normalized double-exponential as a function of 
the number of laser passes through a voxel. The param-
eters were found by fitting the double-exponential to the 
decaying signal of formalin-fixed (4%) cells which had 
been incubated in 10 nM labelled antibodies for at least 
2 h and imaged repeatedly. All measured antibody signal 
time lapses were corrected for photobleaching using this 
model.

Cell and nucleus segmentation
Individual cells were segmented based on the stained 
media signal in which cell boundaries were clearly visible. 
In short, the segmentation pipeline consisted of adaptive 
histogram equalization and Laplacian edge enhancement, 
followed by a water shedding segmentation algorithm. 
More details on the segmentation processing steps may 
be found in the Additional file 1.

Nuclei were segmented by a chain of preprocessing 
steps (see Additional file 1), followed by a morphological 
Chan & Vese segmentation [25].

The cell segmentations were shrunk 0.2-0.3  µm by 
binary erosion to obtain a segmentation of the cells’ cyto-
sol. The cell segmentations were then expanded by use 
of a distance transform. Subtracting the cytosol from the 
expanded segmentation resulted in the segmentation of 
the cell membrane compartment.

Time frame coregistration
Live cell motility resulted in some cells moving in and out 
of the field of view during time lapse imaging. To enable 
consistent identification of individual cells, the differ-
ent time frames were coregistered to a single reference 
frame before segmentation using a group-wise registra-
tion implemented in SimpleElastix [26]. The nuclei were 
segmented as described above. These nucleus segmen-
tations were subsequently inverse transformed to their 
original positions and cell segmentation was continued as 
described above.

Correcting for selection bias
Manually selecting a section of the well to image may 
lead to selection bias. An unbiased cell density distribu-
tion was therefore measured and subsequently used to 
correct any collected data.

Cell density patterns were measured by making over-
view scans of the Hoechst channel of large parts of the 
well. Constant imaging depth relative to the well bottom 
was maintained using the Definite Focus II module.

The images were contrast enhanced (CLAHE) and seg-
mented using a Otsu threshold [27]. The resulting binary 

Fig. 1 Design of the pharmaco-kinetic model of antibody kinetics. 
This model describes antibody-receptor association rate  (Kon) and 
dissociation rate  (Koff), antibody-receptor complex internalization rate 
 (Kint), antibody degradation rate  (Kdeg), and receptor recycling rate 
 (Krec)
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mask was separated into individual nuclei using water 
shedding, followed by a connected component analysis 
(details in Additional file  1). The center of mass (CoM) 
of each nucleus mask was used to calculate the Euclid-
ian distance between every pair of nuclei. From this, the 
unbiased cell density distribution was constructed.

The cell density distribution was measured in the 3D 
dynamic data set as well and a weight was assigned to 
each cell such that the reweighted cell density distribu-
tion closely resembled the unbiased cell density distribu-
tion. These weights were found using a Powell optimizer 
and were used in all subsequent cross-dose and radiobio-
logical calculations.

Pharmaco‑kinetic modelling of antibody kinetics
A pharmaco-kinetic (PK) model was fit to the meas-
ured number of antibodies in the membrane and cyto-
sol compartments for all cells together as a group (i.e., 
ensemble fit). This made it possible to estimate anti-
body kinetic parameters at any time point and at any Ab 
concentration.

 Calibration was required to translate microscope 
image intensity to number of antibodies. To this end, 
a binding assay was performed at 37  °C and 5%  CO2, 
replicating experimental conditions, which allowed 
for natural processes like internalization to occur. The 
7.16.4 antibody was labelled with 111In using the DTPA 
chelator, and immunoreactive fraction (IRF; fraction 
of Ab that is able to successfully bind with its antigen 
after labelling) and specific activity were measured, as 
described previously [22]. A known number of cells 
were seeded in 6-well plates and allowed to adhere 
overnight. The cells were then incubated at 37  °C for 
either 4 h with a varying molar Ab concentration (0.25–
30  nM) or with a set Ab concentration (10  nM) for a 
varying duration (5  min to 24  h). All conditions were 
executed in triplicates. After incubation, cells were 
thrice washed with PBS and the entire cell fraction 
was dissolved in 5% SDS and activity was counted in a 
gamma well counter. Normal cell growth was assumed, 
with a cell doubling time of 26 h and the average activ-
ity per cell was calculated. The average activity per cell 
was converted to number of cell-associated antibod-
ies per cell, by using the specific activity. Differences 
in binding efficacy were corrected for using the ratio 
of IRFs to translate the found binding affinity for 111In-
labelled Ab to 212Pb-labelled Ab [28]. This, together 
with the specific activity of 212Pb-labelled Ab was used 
to calibrate the microscope images and convert to 212Pb 
activity per voxel [22].

The PK model shown in Fig. 1 was fit to the measured 
number of antibodies in the cytosol and membrane 
compartments using a Nelder-Mead Simplex optimizer. 

The objective function was the L2-norm of the sum of 
square differences between the predicted and measured 
number of antibodies in each compartment. For each 
measured time point, 95%-confidence intervals were 
calculated.

Monte Carlo physics simulation
Radioactive decay and particle transport through matter 
was simulated using GEANT4 (v 10.06 patch 2) [29]. All 
matter was set to be equivalent to water. The cell nucleus 
was assumed to be the relevant dose receiving target for 
cell survival. We define a primary event as the decay of a 
single 212Pb atom, including the decay of all its daughters 
to stable 208Pb. All decays are assumed to occur in situ.

The segmented nucleus masks were transformed to 
VTK mesh models by extracting the iso-surface of the 
masks, followed by smoothing, cleaning, and reducing 
operations. These mesh models were subsequently saved 
to a non-binary STL file format, which could be read into 
the custom-build GEANT4 program using CADMesh 
[30].

The spatial antibody signal from the confocal images 
was used as the probability distribution for the random 
selection of primary event locations. This ensured that 
the overall distribution of primary events followed the 
measured spatial distribution of the antibodies exactly.

To this end, the spatial antibody signal from the con-
focal images was saved in the NRRD file format, which 
retains the spatial coordinates of each voxel. These files 
were then imported into a custom-build GEANT4 
program.

Primary events were simulated for each target nucleus 
individually and were stratified according to AD originat-
ing from the (i) cell membrane (membrane AD); (ii) cell 
cytosol (cytosol AD); (iii) cell neighborhood (cross AD). 
This was done by masking out all antibody signal which 
was not part of the compartment of interest. Then, 1 mil-
lion primary events, which included all daughters and 
secondary particles, were simulated (10 million for cross 
AD). The track lengths of alpha particles passing through 
the target nucleus and the deposited energy were saved 
separately for each individual primary event.

Some cells were close to the edges of the field-of-view, 
which would bias the estimation of cross AD for these 
cells. Therefore, activity in the surrounding area was 
approximated by extending the antibody signal with cop-
ies of the signal in both directions, creating a 3 by 3 tile.

Monte Carlo‑based microdosimetry
Microdosimetry describes the dosimetric implications of 
the stochastic nature of low fluence radiation, which is rel-
evant when studying alpha emitters, especially on the small 
spatial scale of single cells and the associated low number 
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of decays. In the microdosimetric literature, rather than 
using a single value for deposited energy or AD, the depos-
ited energy is a stochastic variable called specific energy z , 
which has a probability distribution f (z) . These specific-
energy distributions can be derived analytically for simple, 
well-defined geometries and uniform source locations [20].

In more complex situation, like in this study, specific-
energy distributions may be estimated using repeated 
Monte Carlo simulations. In short, a number of n primary 
events are simulated and the total specific energy for each 
primary event is scored. The number, n , is a Poisson-dis-
tributed stochastic variable for which the mean, 〈n〉 , cor-
responds to the expected total number of primary events 
in a source region. This is then repeated many times (e.g., 
1 million times). The resulting distribution of the scored 
quantities of interest approaches the true specific-energy 
distribution for larger numbers of repetitions.

However, performing these simulations for each experi-
mental condition (e.g., concentration) and each time frame 
(to account for Ab kinetics) would be prohibitively com-
putationally demanding. To maintain feasibility, a large 

number of primary events (1 million; 10 million for cross 
dose) were simulated in one session and for each primary 
event, the total deposited energy and track length through 
the nucleus was scored. We then used a bootstrapping 
approach to estimate the specific energy and track length 
distributions for each experimental condition. This allowed 
for efficient reuse of previously calculated primary events, 
decreasing the computational burden significantly. Each 
microdosimetric distribution presented in this manuscript 
is based on 1 million bootstrap folds.

Because the Ab kinetics were included in this model, the 
number of primary events was calculated in small time 
steps. The expected value for the number of primary events 
per time step was used as input for the bootstrapping 
method for each individual cell and compartment.

Radiobiological modelling
Cell surviving fraction (SF) as a function of activity con-
centration, normalized to a sham-treated 0 Gy group, was 
measured previously [22]. We used the microdosimetric 
methods, as well as the cell density reweighting approach 

Fig. 2 Evolution of antibody kinetics over time. The Initial membrane binding, shown at 10 min post incubation (A), internalization (shown at 
100 min post incubation) in (B) and finally, pooling of the antibody-rich endosomes, likely into lysosomes (26 h post incubation) in (C). Stained 
media is in red, antibodies green and the nuclei are blue. Timelapse video can be found under additional materials (additional file 2)

Fig. 3 Segmentation of the cell contours. Original stained media signal in (A), contrast enhanced in (B) and final segmentation in (C). These final 
masks where then eroded by 0.2 µm, which resulted in the mask for the cytosol
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as described above, to estimate the unbiased AD and track 
length distribution for every experimental condition of 
previously reported SF data.

Specific energy distributions for each cell, f (z) , were 
scored in a histogram with K = 250 equal bins, indexed 
with i . The likelihood of an individual cell surviving, P(S) , 
was modelled as:

where  z0 is an intrinsic microdosimetric cell sensitivity 
parameter and wi is defined as:

Then, the survival fraction of a colony is the average of 
the survival probabilities of all the cells in that colony. We 
considered our data set to be a biased sample of a much 
larger hypothetical colony. To correct for this selection 
bias, a weighted average (rather than a simple average) 
was taken of the individual cell survival probabilities. As 
such, the expected value for survival fraction, 〈SF〉 , for a 
number of J  cells is given by:

where cj indicates the bias correction weights.
This was compared to the classical approach, where 

cell sensitivity κ is estimated by fitting a decaying mono-
exponential to the average nuclear AD across all cells, 
ignoring radiation stochastic effects:

(1)P(S) =

K
∑

i=1

wie
−z0zi

(2)wi =
zi

/

∑K
i=1 f (zi)

(3)�SF� =

J
∑

j=1

cjP
(

Sj
)

/

∑J
j=1

cj

(4)SF = e−κD
,

Fig. 4 Histogram of nucleus volumes. Vertical black bar indicates 
median volume, which corresponds to a sphere-equivalent nucleus 
diameter of 10 µm. Extreme low and high volumes are a result of 
over and under segmentation, respectively, by the segmentation 
algorithm

Fig. 5 Original nucleus density histogram, extracted from high-resolution scans (Acquired distribution) and the unbiased density distribution as 
measured in the unbiased tile scans. The acquired data was reweighted such that it matched the unbiased distribution. This reweighted distribution 
was used for all subsequent AD and cell survival calculations
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with D the selection-bias-free average AD in Gray and κ 
the radiosensitivity parameter in  Gy−1.  D was calculated 
as:

(5)D =

J
∑

j=1

cj�D�j

/

∑J
j=1

cj

where〈D〉j indicates the expected value for AD in cell 
nucleus j , which was calculated for cell j as:

Radiosensitivity parameters z0 and κ were found by 
minimizing the sum of squared errors between the pre-
dicted SF and the experimentally measured SF using a 
Nelder-Mead simplex optimizer.

Radiosensitivity parameter uncertainty
Non-parametric 95%-confidence intervals (95%-CI) of 
the radiobiological parameters were estimated using a 
bootstrapping procedure where possible. In each itera-
tion, a subset of the data was selected to which the radi-
obiological parameters were fit. This was repeated 500 
times, resulting in a sample distribution of the fitted 
parameters. The range between the 2.5 and 97.5-percen-
tile of this distribution is the two-sided 95%-CI and was 
used for statistical significance testing between radiobio-
logical models.

(6)�D� =

K
∑

i=1

f (zi) · zi

K
∑

i=1

f (zi)

Fig. 6 PK fit to measured number of antibodies per cell over time. 
Each dot indicates the average of the cells in a single microscope 
field-of-view

Fig. 7 Histograms of mean ADs for individual cells at the highest activity concentration. A Mean AD of energy emitted by membrane-bound 
activity. B Mean AD for radiation received from neighboring cells. C Mean AD imparted on the nucleus by internalized activity. All ADs are 
log-normally distributed over cells. Vertical dashed bar indicates the reference value of the geometric model; the solid black line indicates average 
of single cell calculated values
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Reference geometric model
The cells in a reference geometric model were modelled 
as two concentric spheres where the inner sphere repre-
sented the nucleus and the outer sphere the cytosol and 
cell membrane. These cells were placed in a regular hex-
agonal grid, with the cell spacing chosen such that the 
cells were maximally spaced out over the well plate bot-
tom. The diameters of the entire cell and nucleus were set 
to 18 µm and 10 µm, respectively.

Results
A total of 567 unique cells were included for analysis. 
Multiple time frames between 10 min and 26 h post incu-
bation were acquired. Antibody kinetics between 0- and 
120-min post incubation were recorded using time lapse 
acquisitions, whereas the time between 120 min and 26 h 
post incubation were sampled using static snapshots. 
Correction for photobleaching was included. Details can 
be found in the Additional file 1.

For the purpose of this study, we have identified three 
distinct phases in antibody binding and trafficking, which 
are shown in Fig. 2: (i) membrane binding; (ii) internali-
zation; (iii) pooling into endosomes.

Segmentations
All segmentations were visually inspected. Typical cell 
segmentation results are shown in Fig. 3. A histogram of 
measured nuclear volumes is given in Fig. 4. The median 
nuclear volume corresponded to an equivalent sphere 
with a 10 µm diameter.

Acquisition bias
Automated overview scans of a 10.9  mm2 surface area, 
containing a total of 1.2 ×  104 cells were acquired. Cell 

nuclei were automatically detected in these scans and the 
distribution of inter-cell distances was estimated for each 
field-of-view (Unbiased distribution). The distribution 
of inter-cell distances for each high-resolution data scan 
was also estimated and was found to be skewed, relative 
to the unbiased overview scans (Acquired distribution), 
indicating a clear acquisition bias (Fig. 5). Each cell’s data 
was reweighted such that the overall inter-cell distance 
distribution closely matched the unbiased distribution. 
These weights were used for subsequent AD and cell sur-
vival fraction calculations.

Antibody kinetics
The number of associated antibodies with the cell mem-
brane and cytosol was modelled using the PK model 
design of Fig.  1. The resulting binding and internaliza-
tion time curves are shown in Fig.  6 for the measured 
10 nM Ab concentration. The optimization resulted in an 
average of 1.72 ×  105 effective binding sites per cell and 
an equilibrium dissociation constant,  KD, of 0.98 nM for 
the 111In-bound Abs, which corrected for difference in 
immunoreaction fraction (95% for 111In; 55% for 212Pb), 
corresponds to 1.69 nM for 212Pb-bound Abs.

Mean absorbed dose trends
In order to assess the inter-cell variability of ADs, the 
distribution of mean AD, 〈D〉 , over the different cells is 
shown in Fig.  7 for the highest activity concentration. 
Membrane, cytosol and cross mean ADs are all log-nor-
mally distributed (Kolmogorov–Smirnov p = 0.61, 0.96 
and 0.84 respectively).

The average of the estimated mean ADs for membrane-
to-nucleus was relatively close to what was calculated 
using the geometric model (16.4% difference). Con-
versely, the geometric model estimate for cross cell AD 
was larger (factor 2 difference), illustrating the difference 
in cell clustering behavior between the two models.

The estimated cytosol mean ADs had a relatively wide 
dispersion, implying varying geometric patterns. This is 
corroborated in Fig. 8, where the cytosol mean ADs are 
plotted as a function of time, revealing a decrease over 
time. This process visually coincided with endosomal 
pooling, an example of which is shown in Fig. 2C.

Microdosimetric distributions
Microdosimetric probability distributions were calcu-
lated for cell nucleus AD (specific energy distribution; 
Fig.  9) and alpha particle track length (specific track 
length distribution; Fig. 10). Of note is the relatively wide 
distribution for both AD, as well as track length. The 
specific energy distribution for the total of all compart-
ments (Fig. 9D) shows a peak AD to and including 0 Gy, 
especially for lower Ab concentrations. This indicates the 

Fig. 8 Changing cytosol average AD over time. The temporal 
decrease shown here, visually coincided with the occurrence of 
endosomal pooling. For visual clarity, time frames were grouped by 
acquisition session
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likelihood of a cell not being hit by any radiation (zero 
path length trough the nucleus), also known as the zero-
hit likelihood. A sharp decline of the zero-hit likelihood 
was observed as a function of Ab concentration, shown 
explicitly in Fig. 11. The variability of single-cell level spe-
cific energy distributions is shown in Fig. 12.

From these specific distributions, the expected value 
for AD, averaged over cells, was calculated for every Ab 
concentration. The SF was plotted against these averaged 
ADs (Fig. 13A). The mean inactivation dose, Dinactivation , 
which is the area under this curve, was calculated using 
the trapezoid integration method. Dinactivation was 
0.24  Gy. The average likelihood of a cell absorbing less 
than the mean inactivation dose as a function of Ab con-
centration was calculated and plotted in Fig. 14.

Radiobiological parameters
The previously measured SFs were used to estimate cell 
sensitivity parameters [22]. The cell sensitivity to mean 
AD, κ , and the microdosimetric cell sensitivity parameter, 
z0 , were found by optimizing the sum of squared error 
between the measured and predicted SF for each AD 
using the Mead-Nelder Simplex optimizer. This resulted 
in a κ of 5.0  Gy−1 (95%-CI 4.4–5.6) and a z0 of 30.1  Gy−1 
(95%-CI 18.5–64.3). The predicted SFs for each approach 
are shown in Fig.  13A. The microdosimetric approach 
predicted SF significantly better than the average dose 
approach (sum of squared error 0.00797; 95%-CI 0.0065–
0.00950 versus 0.0155; 95%-CI 0.0145–0.0191), especially 
for the higher doses. A direct correlation between pre-
dicted and measured SF is shown in Fig. 13B. This is due 

Fig. 9 Microdosimetric specific energy distributions, averaged over cells, for nuclear AD by membrane-bound activity (A), cytosolic activity (B), 
cross activity (C) and the total activity (D). Inserts show the expected value for ADs, averaged over cells as a function of Ab concentration. Dots 
indicate expected values for individual cells. Shaded areas in the inserts indicate 95th-percentile. Shaded areas elsewhere indicate bootstrapped 
95% confidence intervals for the means
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to the non-linear behavior of microdosimetric quantities 
with increasing Ab concentration, as is also evidenced by 
the non-linearities in Fig. 11.

Relative biological effectiveness
RBE values were calculated from the SF fits for both 
αRPT and previously published external beam radio-
therapy (EBRT) data [22, 31]. AD-survival data for EBRT 
was fit with a linear-quadratic equation (α: 0.169; β: 
0.056). The resulting RBE values for the geometric model, 
microscopy-based non-stochastic model and microdosi-
metric z are reported in Table 1. The RBE estimates are 
significantly different between the Geometric Model and 
the non-stochastic microscopy-based model. However, 

adding microdosimetry to the latter does not result in 
significantly different RBE estimates. An overview of the 
AD data is graphically represented in Fig. 15.

Discussion
In this study, we have systematically measured both cell 
geometries as well as the relevant biological processes 
in  situ of a large number of cells under typical experi-
mental conditions. We used this to establish realistic esti-
mates of AD, its variability, microdosimetry and studied 
the implications of several common model selections on 
cell sensitivity and RBE estimates.

The largest discrepancy between the reference geomet-
ric model and our direct estimates are in the estimates for 

Fig. 10 Microdosimetry average track length frequency distributions for A membrane AD, B cytosol AD, C cross AD and D total AD. Inserts show 
the expected values for the track lengths, averaged over all cells. Dots indicate expected values for individual cells. Shaded areas in the inserts 
indicate 95th-percentile. Shaded areas elsewhere indicate bootstrapped 95% confidence intervals for the means
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cross AD (Fig. 7B). Cross AD is mostly affected by cell-to-
cell proximity, which in this study was measured directly 
and was corrected for acquisition bias (Fig. 5). The uni-
form cell clustering density of the geometric model cor-
responds to larger inter-cell distances than those found 
under typical experiment conditions where cells tend to 
tightly cluster together (e.g., Fig. 2). Cell clustering results 
in a higher cross AD (Fig.  7B). This highlights the fact 
that careful consideration of cell-to-cell proximity and 
cell clustering behavior is crucial for any AD model.

Conversely, we found that, on average, the impact of 
cellular geometry on membrane-originating AD is lim-
ited when cells are cultured in groups, as evidenced by 
the small difference between the mean AD estimate of 
our model and the geometric model for the membrane 
(Fig.  7A). This suggests that, although there is variabil-
ity due to cell geometry, on average, when cells become 
adherent, but are closely packed, the both nucleus and 
cell membrane change their shapes in such a way that 
any geometric effect of cell shape change on membrane-
originating AD is limited and is probably counterbal-
anced by the location and flattening of the nucleus. Our 
results contrast with the findings by Guerra Liberal, 
et  al., who found that the AD was significantly differ-
ent for an attached (i.e. flattened) and a concentric (i.e. 
spherical) model [10]. One reason for this discrepancy 
with our findings could be that in their study, the loca-
tion and the shape of the nucleus was modelled instead 
of directly measured. Tang, et  al., modelling electron 
sources, have found a major impact of cell geometry on 
nucleus AD, using two measured 3D models of a cell 
membrane and nucleus [11]. Similarly, Arnaud, et  al. 
found that for Auger emitters, realistic cell models are 
needed, especially when a non-uniform source distribu-
tion is expected [9]. Although their results are internally 
valid, the models in both cases were based on single cells 
in isolation. As such, these cell geometries might be less 
representative of cells under typical experimental condi-
tions, which are packed into clusters, as described above.

The NT2.5 cells used in this study readily internalized 
membrane bound antibodies into endosomes (Fig.  2B, 
C). Perinuclear trafficking and subsequent pooling of 
these endosomes resulted in variability in AD by the 
internalized activity fraction (Fig. 7C), which was found 
to be time-dependent (Fig.  8). This indicates that the 
assumption in the geometric model that activity is uni-
formly distributed in the cytosol is an inaccurate model 
for antibody internalization. This finding is in agreement 
with previous suggestions [9].

The mean ADs for the main compartments are log-nor-
mally distributed, which is in agreement with previous 
observations [32–34].

We have found that the application of microdosimetry 
resulted in a significantly better prediction of SF, relative 
to using non-stochastic mean ADs (i.e., s-values). This 
can be explained with the highly non-linear behavior of 
microdosimetry, especially at lower activity concentra-
tions. For example, the 0-hit likelihood is greater than 
50% for the lower half of activity concentrations that 
were modeled (Fig. 11). In an average AD approach, this 
effect would be ignored, and the imparted energy would 
essentially be averaged over all cells, resulting in lower 
ADs per cell. Consequently, given a certain observed SF 

Fig. 11 Zero-hit likelihood over all cells. Lower half of the modelled 
Ab concentrations resulted in more than 50% of the cells receiving 
no dose at all. Shaded area indicates bootstrapped 95% confidence 
interval for the mean

Fig. 12 Density plot indicating dispersion around the mean for 
total absorbed specific energy at the highest concentration for 
individual cells (compare to Fig. 9D). Plot is color coded, so that the 
95-percentile is denoted with the lightest gray and the 5-percentile 
with the darkest gray
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for that activity concentration, this would result in lower 
estimates for cell sensitivity to radiation. Therefore, we 
concluded that a microdosimetric approach is needed for 
the range of activity concentrations used in a typical cell 
survival assay.

The analyses in this study were based on the observa-
tion of 567 individual cells under experimental condi-
tions. This allowed for a rigorous statistical approach, 
which included the ability to estimate 95%-confidence 
intervals for all of the calculated statistics, as well as 

Fig. 13 Microdosimetric SF modelling. A SF as measured and modeled with a monoexponential function with AD and the microdosimetric 
approach. The microdosimetric approach results in more accurate predictions for SF than the monoexponential fit. Shaded areas indicate 
bootstrapped 95% confidence intervals. B microdosimetry SF prediction correlates well with measured SF

Fig. 14 Likelihood of an AD which is lower than the mean 
inactivation dose, Dinactivation , over all cells. Shaded area indicates 
bootstrapped 95% confidence interval for the mean

Table 1 Calculated RBE values. Subscripts indicate corresponding 
SFs; RBE2 denotes a SF scale-free RBE metric

RBE Metric Geometric 
Model

Non‑stochastic 
AD (95%‑CI)

Microdosimetric 
AD

RBE10 8.5 10.8 (9.9–12.0) 9.0

RBE37 11.5 14.7 (13.4–16.3) 14.6

RBE50 12.9 16.5 (15.1–18.3) 17.5

RBE2 13.7 17.5 (16.0–19.4) –

Fig. 15 Graphical overview of mean AD estimates for each cell for 
αRPT and EBRT in one plot. Each dot indicates the mean AD, 〈D〉 , of 
each measured cell. The curve above indicates the relative number of 
cells at that position. The ratio between the XRT and αRPT lines for a 
given SF is the RBE metric
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formally test for significance between groups. As is evi-
denced by the narrow confidence intervals as well as sta-
tistically significant tests, the number of cells we have 
included for this study was sufficient to support the sta-
tistical claims made in this manuscript.

There are several simplifying assumptions that under-
pin this study. We have posited that cell kill is caused by 
DNA damage and that therefore the nucleus is the sole 
radiobiologically relevant target for αRPT. Although this 
is a common assumption, we acknowledge that there are 
many other radiobiological pathways which can lead to 
apoptosis. For example, ionizing radiation absorbed by 
the cell membrane can cause lipid rafts, mitochondrial 
damage can result in the release of cytochrome c, the 
bystander effect can result in the production of reactive 
oxygen species and there are many more [35]. However, 
to include these in a radiobiological response model, the 
quantitative alpha particle absorbed dose–response rela-
tionships for each of those pathways (and their interac-
tions) would be needed. As far as we are aware, there are 
currently no such quantitative relationships and the (dif-
ferential) activation of each of these pathways will need 
to be established in future work.

We have used the Ab locations as a proxy for the loca-
tion of all isotope decay events. As such, the diffusion 
of daughter isotopes away from the original Ab location 
was assumed to be negligible, which might be reason-
able given the modest half-life of the daughters of 212Pb. 
Furthermore, adding diffusion processes would require 
estimating currently unknown model parameters, such as 
the (likely anisotropic) diffusivity of the different daugh-
ter isotopes through a cell monolayer and the probabil-
ity of daughters escaping the chelator through nuclear 
recoil. Some work has been done on the latter to increase 
retention of daughters [36]. We implicitly assumed that 
after internalization, the Ab-isotope construct remains 
either fully intact or when it dissociates through biologi-
cal processes, the Ab, isotope and its daughters all stay 
within the endosome and are later pooled into lysosomes 
[37]. The fate of the isotopes after internalization remains 
unclear. The quantitative data which would be required 
for additional layers of model complexity is not available. 
Although this simplification might have some impact on 
the exact the AD estimates we present here (especially 
the relative contribution of the membrane source region), 
we believe the comparison to the geometric model as 
well as the main findings of this work are not significantly 
affected by this.

We further acknowledge that the binding and inter-
nalization kinetics used in this study for AD modeling 
are specific to Ab-mediated targeting and could be dif-
ferent for peptides or small molecules. However, as the 
underlying physics do not change, we expect that many 

of the observations (e.g., the importance of cell clustering 
behavior and microdosimetry) will generalize to other 
alpha-emitter radiopharmaceuticals.

Conclusion
We have shown that cell clustering and stochastic radia-
tion effects, rather than cellular geometry, are the main 
drivers of inaccuracies in current geometric models. 
Radiobiological response models at the cellular level 
should incorporate these effects when the aim is to gen-
eralize the findings to other experimental designs or 
when investigating radiobiology in vivo.
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