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Abstract 

Background: Lymph node metastasis (LNM) is one of the most important factors affecting the prognosis of breast 
cancer. The accurate evaluation of lymph node status is useful to predict the outcomes of patients and guide the 
choice of cancer treatment. However, there is still lack of a low‑cost non‑invasive method to assess the status of axil‑
lary lymph node (ALN). Gene expression signature has been used to assess lymph node metastasis status of breast 
cancer. In addition, nucleosome footprint of cell‑free DNA (cfDNA) carries gene expression information of its original 
tissues, so it may be used to evaluate the axillary lymph node status in breast cancer.

Methods: In this study, we found that the cfDNA nucleosome footprints between the ALN‑positive patients and 
ALN‑negative patients showed different patterns by implementing whole‑genome sequencing (WGS) to detect 
15 ALN‑positive and 15 ALN‑negative patients. In order to further evaluate its potential for assessing ALN status, we 
developed a classifier with multiple machine learning models by using 330 WGS data of cfDNA from 162 ALN‑positive 
and 168 ALN‑negative samples to distinguish these two types of patients.

Results: We found that the promoter profiling between the ALN‑positive patients and ALN‑negative patients 
showed distinct patterns. In addition, we observed 1071 genes with differential promoter coverage and their func‑
tions were closely related to tumorigenesis. We found that the predictive classifier based on promoter profiling with a 
support vector machine model, named PPCNM, produced the largest area under the curve of 0.897 (95% confidence 
interval 0.86–0.93).

Conclusions: These results indicate that promoter profiling can be used to distinguish ALN‑positive patients from 
ALN‑negative patients, which may be helpful to guide the choice of cancer treatment.
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Background
Lymph node metastasis (LNM) is one of the most 
important factors affecting the prognosis of breast can-
cer [1]. The accurate assessment of lymph node status 
can predict patients’ outcomes and guide the choice 
of treatment options [2]. Axillary lymph node dissec-
tion (ALND) is the gold standard for evaluating axillary 
lymph node (ALN) status, but it would bring great harm 
to patients. Although milder sentinel lymph node biopsy 
(SLNB) has become routine surgery, it is still risk surgery, 
which would increase considerable anesthesia time and 
expense, and cause multiple complications in 3.5–10.9% 
of patients [3, 4]. Therefore, developing a low-cost non-
invasive method to evaluate the status of ALN would be 
of great benefit to breast cancer patients.

Cell-free DNA (cfDNA) has been an essential bio-
marker in many cancer applications, such as early detec-
tion and outcome prediction of cancer [5]. At present, 
the most commonly used features are cfDNA level and its 
sequence information. Previous studies have described 
the close relationship between abnormal cfDNA levels 
and ALN metastasis [6, 7], which indicates that cfDNA 
may be used to assess ALN status. However, the level of 
cfDNA is influenced levels are affected by many patho-
logical processes, such as infection and inflammation 
[8–10]. In addition, some studies wanted to find ALN 
metastasis-related ctDNA mutations or ctDNA hyper-
methylation [1, 11–13], however, no relationship was 
found between them [2]. Thus, novel disease-specific fea-
tures of cfDNA with high predictive efficacy are needed 
to be found for predicting LNM.

Recently, cfDNA coverage on gene promoter has found 
that it carried gene expression information of its origi-
nal tissues [14, 15]. Plasma cfDNA is mainly released by 
apoptotic cells after enzymatic processing of chromatin 
[16]. The DNA bound to the nucleosomes is retained, 
while the exposed DNA between the nucleosomes is 
digested. Analysis of cfDNA fragments derived from 
cancers showed that the promoter regions of active 
genes exhibited depleted coverage, which meant that 
nucleosome binding was less in these regions along 
with increased gene expression [15]. In cancer patients, 
cfDNA is mainly derived from tumor and hematopoietic 
cells [16]. More importantly, studies on breast cancer 
have shown that many gene expression signatures could 
be used to estimate the risk of distant relapses, and some 
of which have been commercialized, such as PAM50. In 
addition, the immune cells have been proved to play an 
important role in tumor metastasis, and the peripheral 

blood immunome of breast cancer patients is influenced 
by the existence and stage of cancer [17, 18]. Therefore, 
we assume that the cfDNA coverage at the gene pro-
moter has potential to assess the ALN status.

In this study, we first compared the nucleosome foot-
print around the transcriptional start sites (TSS) of 
ALN-positive and ALN-negative breast cancer patients 
to identify genes with differential coverage. In order to 
further evaluate the potential of promoter profiling for 
evaluating ALN status, we developed a classifier for dis-
tinguishing ALN-positive and ALN-negative patients 
by using multiple machine learning models. Finally, we 
incorporated some clinicopathological characteristics 
in our classifier to test whether its performance would 
improve.

Methods
Participants and study design
From January 2018 to December 2019, before cancer 
therapy, plasma samples were prospectively collected 
from 330 breast cancer patients, including 162 ALN-
positive and 168 ALN-negative patients. We excluded 
patients who: (1) were pregnant or lactating, (2) were 
metastatic breast cancer or had non-infiltrating tumors 
histologically, (3) had a hematopoietic system or inflam-
matory breast diseases, and (4) were ALN-negative 
patients diagnosed with fine needle aspiration biopsy. 
We reviewed all tumor specimens histopathologically 
and staged them according to the seventh edition of 
the American Joint Committee on Cancer (AJCC) stag-
ing system for breast cancer. All plasma samples were 
obtained under institutional review board of The First 
People’s Hospital of Foshan approved protocols with writ-
ten informed consent from all participants for research 
use (ID: L[2021]-7). Table 1 summarizes the characteris-
tics of patients, including age, T stage, estrogen- (ER) and 
progesterone-receptor (PR) status, expression of human 
epidermal growth factor receptor 2 (Her2), proliferative 
fraction (Ki-67 labeling index), and histological grade.

ALN surgery
The ALN status was ascertained clinically by fine needle 
aspiration biopsy, ALND or SLNB. Because the num-
ber of lymph nodes detected by the fine needle aspira-
tion biopsy is limited, some positive lymph nodes may 
be ignored, which may increase the false positive rate 
of the evaluation model. Therefore, the patients with 
ALN-negative detected by fine needle aspiration biopsy 
were excluded from this study. Indocyanine green with a 

Keywords: Cell‑free DNA, Whole‑genome sequencing, Promoter profiling, Lymph node metastasis, Breast cancer



Page 3 of 11Guo et al. Journal of Translational Medicine          (2022) 20:557  

carbon nanoparticle suspension was used for SLNB and 
more than three LNs were checked for cancer.

Extracting and sequencing cfDNA
In total, 1 mL peripheral blood was collected using EDTA 
tubes from each patient and then immediately imple-
mented two-step centrifugation to obtain the plasma. 
The centrifugation parameters were is 1600g for 10 min, 
followed by 10 min at 16,000g at 4 °C. Subsequently, the 
plasma was stored at − 80  °C before use. Each sample 
yielded at least 1 ng total cfDNA for sequencing. cfDNA 
was extracted from plasma by QIAamp DNA Blood 
Mini Kit (Qiagen). A starting amount of approximately 
1–5 ng DNA was used for library construction with the 
Life Sciences Ion Xpress™ Plus Fragment Library Kit. The 
number of PCR cycles was set to 12. The DNA size distri-
bution of libraries was analyzed on a Bioanalyzer instru-
ment (Agilent Technologies, Singapore). Sequencing was 
performed with the Ion PI™ Hi-Q™ OT2 200 Kit and 
the Ion PI™ Hi-Q™ Sequencing 200 Kit on Ion Proton 

platform (ThermoFisher Scientific, USA) with 520 flow. 
The mean depth of the sequencing samples was approxi-
mately 0.3×.

Sequencing data processing
After sequencing, the raw read was aligned to the human 
reference genome (hg19) using bwa (ver.0.7.5). Then, 
SAMtools rmdup function (ver. 0.1.18) was used to 
remove the polymerase chain reaction duplicates [19]. 
The GC-bias correction was implemented using the 
deeptools (ver.3.5.0) with the default setting. The calcula-
tion of tumor fraction and copy number-bias correlation 
were implemented using ichorCNA algorithm [20].

Promoter profiling calculation
The calculation of promoter profiling was similar to 
that used in our previous study [15, 21]. In briefly, gene 
information was downloaded from RefSeq of Univer-
sity of California Santa Cruz [22]. The region ranging 
from − 1 KB to + 1 KB around the transcriptional start 

Table 1 Patient characteristics

Data is showed as patient number (%)

ER estrogen receptor, PR progesterone receptor, Her2 human epidermal growth factor receptor 2
a Wilcox rank sum test
b Chi square test
c Fisher’s exact test

ALN-positive (n = 162) ALN-negative (n = 168)

Training (n = 113) Validation (n = 49) P-value Training (n = 118) Validation (n = 50) P-value

Age

 Years [range] 51.6 [31–83] 49.1 [35–83] 0.124a 51.7 [28–88] 52.9 [26–79] 0.611a

T stage

 T1 22 (19.5) 13 (26.5) 0.355b 77 (65.3) 28 (56.0) 0.288c

 T2 69 (61.1) 24 (49.0) 39 (33.1) 22 (44.0)

 T3/T4 22 (19.4) 12 (24.5) 2 (1.6) 0 (0)

ER

 Positive 90 (79.6) 43 (87.8) 0.311b 99 (83.9) 40 (80.0) 0.698b

 Negative 23 (20.4) 6 (12.2) 19 (16.1) 10 (20.0)

PR

 Positive 94 (83.2) 39 (79.6) 0.745b 98 (83.1) 41 (82.0) 1b

 Negative 19 (16.8) 10 (20.4) 20 (16.9) 9 (18.0)

Her2

 Positive 97 (85.8) 38 (77.6) 0.284b 97 (82.2) 42 (84.0) 0.953b

 Negative 16 (14.2) 11 (22.4) 21 (17.8) 8 (16.0)

Ki67

 < 20 41 (36.3) 21 (42.9) 0.539b 63 (53.4) 21 (42.0) 0.238b

 ≥ 20 72 (63.7) 28 (57.1) 55 (46.6) 29 (58.0)

Histological grade

 1 3 (2.7) 4 (8.2) 0.174c 14 (11.9) 4 (8.0) 0.640c

 2 82 (72.6) 37 (75.5) 80 (67.8) 38 (76.0)

 3 28 (24.7) 8 (16.3) 24 (20.3) 8 (16.0)
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site of each transcript, was defined as the primary tran-
scription start site (pTSS), was first identified. The read 
counts for each base at the pTSS were calculated using 
DANPOS with default setting [23]. After read alignment, 
the read coverage at the pTSS was extracted from the 
aligned BAM files using bedtools (ver. 2.17.0). Then, the 
read coverage was normalized by the reads per kilobase 
per million mapped reads (RPKM)-like method. The nor-
malized value of promoter profiling was calculated by the 
following formula:

here, the length of each transcript is equal to 2000 
because of the pTSS region ranging from − 1  KB to 
+ 1 KB around each transcriptional start site.

Models for evaluating lymph node status
To develop the evaluation classifier, the patients were 
firstly divided into three cohorts, including discovery, 
training and validation cohorts. In the discovery cohort, 
we identified the genes with differential promoter cov-
erage. Then, the plasma samples were then divided into 
training and validation cohorts in a ratio of 7:3. Based 
on the training cohort data, we developed classifiers 
using three models, including support vector machine 
(SVM), logistic regression (LR), and linear discriminant 
analysis (LDA) models, to distinguish ALN-positive and 
ALN-negative tumors. The importance of the features 
was assessed with the sigFeature package of R. Then we 
selected top 100 features for further classifier construc-
tion. The SVM classifier was constructed with the lin-
ear kernel in e1071 package using the default setting. In 
order to identify the optimal gene combination with the 
largest area under the curve (AUC), backward method 
was adopted. To avoid potential bias and over-fitting in 
the training cohort, the leave-one-out cross validation 
method was used to evaluate the robustness of these clas-
sifiers. Briefly, each subject in the training cohort was 
withheld in turn, and the rest subjects were submitted 
to train the model. The trained model was then used to 
determine the class of the withheld subject. This proce-
dure went on until all subjects in the training cohort were 
judged. Finally, the efficacy of selected classifiers was 
evaluated using the validation cohort data.

Statistical analysis
Wilcoxon rank-sum test or Chi square test were used 
for analyses that compared the two groups. Benjamini–
Hochberg method was used to adjust the raw P-values 
to the false discovery rate (FDR). Variables with fold 

Normailzed Promoter profiling =

cfDNA coverage around TSS× 1, 000, 000

Totally mapped reads× length
,

change ≥ 1.5 and FDR ≤ 0.05 were considered statistically 
significant. The genes with differential promoter coverage 
were used to plot uniform manifold approximation and 
projection (UMAP) and heat map using uwot package 
and pheatmap package in R (version 3.0.1), respectively. 
Receiver operating characteristic (ROC) curves were 
plotted and differences in the AUC were compared using 
the pROC package [24]. GO enrichment analysis was 
implemented by using Metascape with default settings 
[25]. Housekeeping genes and non-constitutive genes 

were downloaded from the additional material of a previ-
ous study [14].

Results
cfDNA promoter profiling related to tumor expression 
profiles
In order to test whether the promoter profiling of cfDNA 
could be used to predict ALN metastasis, we first stud-
ied whether the coverage of gene promoter regions 
(± 1  KB around TSS) was related to gene expression 
profiles (Fig.  1). Consistent with previous studies [14], 
the promoter coverage of housekeeping genes with high 
expression levels was significantly reduced compared 
with those of non-constitutive genes (Fig. 3a). Then, we 
studied whether the footprint of nucleosomes around 
the TSS was different between ALN-positive and ALN-
negative groups. In ALN-positive breast cancer patients, 
we observed the loss of related cfDNA signals (Fig.  3b; 
P = 2.2e−16, Wilcoxon rank sum test).

Genes with differential promoter coverage associated 
with LNM
The workflow of our study mainly consisted of three 
stages, including discovery, training and validation stages 
(Fig. 2). In the discovery cohort, we identified the genes 
with differential promoter coverage. When comparing 
the promoter profiling of each gene, we observed 1,071 
genes with differential promoter coverage between ALN-
positive and ALN-negative patients (Fig.  3e and Addi-
tional file 1: Table S1; fold change ≥ 1.5 and FDR ≤ 0.05, 
Wilcoxon rank sum test). Then, using UMAP, we found 
that samples from the same groups were clustered 
together, while the samples from different groups were 
scattered (Fig. 3c). In addition, the heat map showed dis-
tinct patterns of promoter coverage between ALN-pos-
itive and ALN-negative breast cancer patients (Fig.  3d). 
These results indicated that promoter profiling has 
potential for assessing the ALN status of breast cancer.
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By GO enrichment analysis of the genes with differen-
tial promoter coverage, we found that most of GO terms 
were immuno-associated and growth-associated pro-
cesses (Fig.  3f ). Consistent with the existing literature, 
cfDNA could reflect the expression status of its original 
tissues. As the expression of tumor and peripheral blood 
immunome was closely related to cancer stage [18], the 

above annotation results may indicate that the genes with 
differential promoter coverage may be associated with 
ALN involvement.

Classifiers for evaluating ALN status
To evaluate the potential of promoter profiling for 
assessing ALN status, we used WGS to characterize the 

Fig. 1 Schematic diagram of PPCNM. In cancer, plasma cell‑free DNA (cfDNA) is primarily derived from apoptotic tumor and hematopoietic cells. 
Exposed DNA not bound to a nucleosome is digested, whereas nucleosome‑bound DNA escapes digestion and enters the circulation. cfDNA has 
a nucleosome footprint, which carries information about its original tissues and could reflect its gene expression status. Because axillary lymph 
node (ALN)‑positive and ALN‑negative breast cancer patients have different gene expression signatures in tumor and hematopoietic cells, their 
nucleosome patterns may show difference. Therefore, we assume that the promoter coverage of cfDNA detected by whole‑genome sequencing 
could be used to develop classifiers for predicting lymph node metastasis



Page 6 of 11Guo et al. Journal of Translational Medicine          (2022) 20:557 

promoter profiling of cfDNA derived from 330 breast 
cancer patients collected from January 2018 to December 
2019, including 162 ALN-positive and 168 ALN-negative 
patients. The patients were split into training and valida-
tion cohorts with a 7:3 ratio and the clinicopathological 
parameters, such as age, T stage, ER, PR, and Her2 status, 
were well balanced between the two cohorts of breast 
patients (Table 1; all P > 0.05).

Then, we used genes with differential promoter cover-
age in SVM model to develop classifiers to distinguish 
ALN-positive from ALN-negative patients. ROC analy-
sis was used to evaluate the AUC, sensitivity, specific-
ity and accuracy of the promoter profiling classifiers 
(Fig.  4a). Among these combinations, a 48-gene com-
bination named PPCNM performed well in the train-
ing cohort after LOOCV, with an AUC of 0.936 (95% 
confidence interval [CI] 0.904–0.967 and an accuracy of 
0.848, Fig. 4a and Additional file 1: Table S2). The perfor-
mance of PPCNM was further evaluated in the validation 
cohort, and we found that the AUC of PPCNM in the 
validation cohort was 0.808 (0.730–0.887) (Fig. 4b). These 
results indicated that a classifier based on promoter pro-
filing can be used to assess ALN status.

Across all cohorts, the average AUC of PPCNM was 
0.897 (0.865–0.930), which was used to distinguish ALN-
positive and ALN-negative patients, with a sensitivity of 
0.914 and a specificity of 0.881 (Fig.  4c). The AUC pro-
duced by PPCNM was significantly greater than those 
of classifiers based on the LR and LDA models (Fig. 4c, 
LR: 0.829 [0.789–0.870], P = 8.37E−04 and LDA: 0.757 
[0.711–0.803], P = 4.03E−10).

PPCNM and tumor DNA fraction
The level of tumor DNA fraction is one of the most 
important characteristics of tumor. Firstly, we calcu-
lated the tumor DNA fraction of ALN-positive and 
ALN-negative patients, and found that its levels between 

Fig. 2 Study design. In order to develop classifiers to predict ALN 
status, our study was divided into three stage, including discovery, 
training and validation stage. In the discovery stage, the genes with 
differential coverages were identified. In the training stage, different 
machine learning models were used to develop classifiers by using 
the differential features. The importance of the features was assessed 
with the sigFeature package of R. Then we selected top 100 features 
for further classifier construction. In order to identify the optimal gene 
combination with the largest area under the curve (AUC), backward 
method was adopted. Finally, the classifiers with the largest AUC 
were selected. In the validation stage, the predictive efficacy of the 
selected classifiers was assessed using an internal validation cohort. 
The detailed characteristics of breast cancer patients were shown in 
Table 1. WGS whole genome sequencing, ALN axillary lymph node, 
TSS transcriptional start site, SVM support vector machine, LR logistic 
regression, LDA linear discriminant analysis, LOOCV leave one out 
cross validation

Fig. 3 The cfDNA promoter profiling shows the potential to predict ALN status. a Promoter profiling of the non‑constitutive and housekeeping 
genes. The average promoter coverage was calculated by using the whole genome sequencing data derived from 30 breast cancer patients. 
The non‑constitutive and housekeeping genes were obtained from the additional materials of previous study [14]. b Promoter profiling of 
the ALN‑negative and ‑positive breast cancer patients. Mean promoter profiling of protein coding genes derived from15 ALN‑positive and 15 
ALN‑negative breast cancer patients was detected using whole genome sequencing. c Uniform manifold approximation and projection (UMAP) 
plot representing the associations between ALN‑positive and ‑negative groups. The genes with differential promoter coverages were used to plot 
UMAP. d Heat map of the z‑scores of genes with differential read coverages. e Volcano plots of gene transcripts with differential read coverages at 
the promoter (fold change ≥ 1.5 and false discovery rate [FDR] ≤ 0.05) between 15 ALN‑positive and 15 ALN‑negative patients. f Analysis of Gene 
Ontology (GO) enrichment of genes with differential promoter coverage. TSS transcriptional start sites, Decreased genes with differentially decreased 
read coverage, Increased genes with differentially increased read coverage, Non genes with no differential read coverage, ALN axillary lymph node

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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these two groups were similar (Additional file 1: Fig. S1; 
P-value = 0.1663). In addition, we found that the efficacy 
of PPCNM was similar in different concentrations of 
tumor DNA fraction (all P-value > 0.5; Additional file  1: 
Table S3). The AUC of tumor DNA fraction used to pre-
dict ALN status was 0.544 (0.482–0.606). The efficacy of 
the combination of PPCNM with tumor DNA fraction 
has an AUC 0.845 (0.806–0.885), which is significantly 
lower than that of PPCNM (P = 2.8E−04).

PPCNM combined with clinicopathological characteristics
Previous studies have shown the close relationship 
between ER, PR, Her2, and Ki67 status with ALN metas-
tasis [26, 27]. Therefore, we first investigated whether the 
efficacy of our classifiers was different between positive- 
and negative-status of each feature. The efficacy of the 
PPCNM model was similar in regards to ER-positive vs. 
ER-negative, PR-positive vs. PR-negative, Her2-positive 
vs. Her2-negative, and Ki67-High and Ki67-Low (Fig. 5a–
d). We then incorporated these clinical characteristics 
with PPCNM to see whether its performance would fur-
ther improve. By evaluating the efficacy of their exhaus-
tive combination with PPCNM, we found that the AUC, 
accuracy, sensitivity of the PPCNM decreased after being 
combined with one of the four clinical features (Fig. 5e, f 
and Additional file 1: Table S4).

Discussion
We found that there was a significant difference in pro-
moter profiling between ALN-positive and ALN-negative 
breast cancer patients (Fig.  3). The classifier PPCNM 
based on promoter profiling using the SVM model, pro-
duced the maximum AUC (0.897 [0.865–0.930]) for 
distinguishing these two groups of patients, and its per-
formance was significantly better than those of classifi-
ers relied on LR and LDA regression models (Fig. 4c; all 
P < 0.05). In addition, the AUC increased slightly with the 
incorporation of clinical characteristics. These findings 
indicate that PPCNM may be a promising non-invasive 
tool for evaluating ALN status.

There are forty-eight genes in the PPCNM (Addi-
tional file  1: Table  S2). These genes are closely associ-
ated with the metastasis of tumor. For instance, a large 
number of studies have reported the close relationship 
between NF-κB signaling pathway and tumor metastasis 
[28, 29]. NF-κB signaling pathway regulates the expres-
sion of its downstream target genes, including MMP9, 
TNFα, uPA and IL8, thus promoting the invasion and 
metastasis of breast cancer cells [29]. Besides, BHLHE40 
confers a pro-survival and pro-metastatic phenotype to 
breast cancer cells by modulating HBEGF secretion [30]. 
And BHLHE40 facilitates the invasion of cancer cell by 

Fig. 4 Receiver operating characteristic (ROC) curves of PPCNM. a, Support vector machine, SVM b, Logistic regression, LR. c, Linear discrimination 
analysis, LDA. Acc accuracy, Sen sensitivity, Spe specificity, P the P value of AUC comparison between SVM vs. LR and SVM vs. LDA calculated by 
pROC package in R. The ROC showed the AUC of the best combination after cross‑validation, therefore, it lacked the ‘arc’ shape



Page 9 of 11Guo et al. Journal of Translational Medicine          (2022) 20:557  

Fig. 5 Performance of classifiers. a ROC curve for (ER/PR/Her2/Ki67)‑positive and (ER/PR/Her2/Ki67)‑negative groups. b Performance of the best 
combinations of PPCNM with different number of clinical features. c ROC curve for the best combinations of PPCNM with different number of 
clinical features. AUC  area under curve, SVM support vector machine, LR logistic regression
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interacting with SP1 [31]. In addition, USP20 can pro-
mote breast cancer metastasis by stabilizing SNAI2 [32].

ALN status is an essential factor for the prognosis of 
breast cancer patients and the choice of cancer treat-
ment in breast cancer [2]. Although milder SLNB has 
become more pervasive, LN surgery for evaluating ALN 
status still brings various side effects to patients. There-
fore, developing a non-invasive method to predict ALN 
status may be beneficial to breast cancer patients. At 
present, some studies show that increased cfDNA levels 
are related to ALN Metastasis [6, 7]. But cfDNA levels 
were affected by various physiological and pathological 
processes [8–10]. More specific features of cfDNA have 
to be found for assessing ALN status. Previous stud-
ies have reported that cell-free DNA promoter profil-
ing and TF profiling is capable of prediction of tumor 
subtypes in prostate and detect early-stage colorectal 
cancer [14, 33]. Therefore, we assume that promoter 
profiling could be used to evaluate ALN status. In this 
study, we found the characteristics of specific promoter 
profile signatures of cfDNA in ALN-positive and ALN-
negative patients (Fig.  3e). The classifiers (PPCNM) 
based on these differential variables achieved high 
performance with an AUC of 0.897 [0.865–0.930]. We 
developed a non-invasive method based on plasma 
cfDNA to assess ALN status, which could dynamically 
monitor the status of lymph node. More importantly, 
our method could avoid the heterogeneity of tumor in 
tissue detection. Nevertheless, there are some limita-
tions in our research. Although the AUC of our clas-
sifier achieved 0.897, and 330 WGS data was used in 
this study, more prospective samples and samples from 
other external centers were needed to improve the pre-
dictive value of efficacy before clinical application.

In summary, our data suggest that PPCNM is a promis-
ing tool based on promoter profiling for evaluating ALN 
status in breast cancer. PPCNM is a non-invasive tech-
nique, which only needs low-coverage DNA sequencing 
and is not affected by cancer heterogeneity. Therefore, 
the PPCNM classifier may help patients and clinicians 
to choose appropriate cancer treatment methods, thus 
improving the curative effects and the quality of life of 
cancer.
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