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Abstract 

Background: Efficacy of conventional sequential chemotherapy paradigm for advanced gastric cancer (AGC) 
patients has largely plateaued. Dynamic molecular changes during and after sequential chemotherapy have not been 
fully delineated. We aimed to profile the molecular evolutionary process of AGC patients during sequential chemo-
therapy by next generation sequencing (NGS) of plasma circulating tumor DNA (ctDNA).

Methods: A total of 30 chemo-naïve patients who were diagnosed with unresectable advanced or metastatic 
stomach adenocarcinoma were enrolled. All patients received sequential chemotherapy regimens following the 
clinical guideline. One hundred and eight serial peripheral blood samples were collected at baseline, radiographical 
assessment and disease progression. Plasma ctDNA was isolated and a customized NGS panel was used to detect the 
genomic features of ctDNA including single nucleotide variants (SNVs) and gene-level copy number variations (CNVs). 
KEGG pathway enrichment analysis was performed.

Results: Platinum-based combination chemotherapy was administrated as first-line regimen. Objective response 
rate was 50% (15/30). Patients with higher baseline values of copy number instability (CNI), CNVs and variant allel 
frequency (VAF) were more sensitive to platinum-based first-line regimens. Tumor mutation burden (TMB), CNI and 
CNV burden at partial response and stable disease were significantly lower than those at baseline, where at progres-
sive disease they recovered to baseline levels. Dynamic change of TMB (ΔTMB) was correlated with progression-free 
survival of first-line treatment. Fluctuating changes of SNVs and gene-level CNVs could be observed during sequential 
chemotherapy. Under the pressure of conventional chemotherapy, the number of novel gene-level CNVs were found 
to be higher than that of novel SNVs. Such novel molecular alterations could be enriched into multiple common 
oncologic signaling pathways, including EGFR tyrosine kinase inhibitor resistance and platinum drug resistance path-
ways, where their distributions were found to be highly heterogenous among patients. The impact of subsequent 
regimens, including paclitaxel-based and irinotecan-based regimens, on the molecular changes driven by first-line 
therapy was subtle.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of 
Translational Medicine

†Wenqi Xi and Chenfei Zhou have contributed equally to this manuscript and 
should be considered as co-first authors

*Correspondence:  junzhang10977@sjtu.edu.cn

1 Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University 
School of Medicine, No. 197 Ruijin er Road, Shanghai 200025, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7973-8416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03567-5&domain=pdf


Page 2 of 14Xi et al. Journal of Translational Medicine          (2022) 20:365 

Introduction
Gastric cancer is one of the leading causes of cancer 
death in China with 5-year overall survival (OS) that is 
barely over 30% [1, 2]. The backbone therapeutic for 
advanced gastric cancer (AGC) patients remains to be 
multi-drug combination chemotherapy, which has shown 
efficacy that has largely plateaued [3]. The median pro-
gression-free survival (PFS) of AGC patients is about 
6–8  months in first-line setting. Despite progress made 
in understanding mechanisms that explain chemotherapy 
resistance of AGC using bioinformatics and multi-omics 
analysis technologies, biomarkers deemed to be able to 
identify patients who are more likely to respond to com-
bination chemotherapy are surrounded by controversy 
[4–6].

Options available to AGC patients as subsequent regi-
mens after first-line treatment are limited [7–9], where 
the efficacy of current treatment patterns is unsatisfac-
tory. Under the pressure of chemotherapy, tumor cells 
may evolve to adapt to chemotherapy and acquire a 
resistant phenotype. Fitness trade-offs occur during this 
process, which could induce vulnerability to some other 
drugs. Thus, understanding the molecular evolution in 
place during the treatment may help to optimize the sub-
sequent treatment. Re-biopsy for late-stage patients is 
normally difficult, and high inter- and intra-tumoral het-
erogeneity of gastric cancer suggests that genomic anal-
ysis based on tissue biopsy may hardly provide results 
that are representative of the molecular alterations of the 
tumor.

Analysis of circulating tumor DNA (ctDNA) using 
next generation sequencing (NGS) offers a mini-invasive 
method to avoid the intra-tumoral heterogeneity and to 
dynamically monitor the molecular alterations in place 
[10–12]. The correlation between the genomic altera-
tions of ctDNA and the clinical efficacy of the systemic 
treatment of gastric cancer has already been recognized 
in the literature [13]. Changes of quantitative data includ-
ing ctDNA concentration, mutant allele fraction, molec-
ular tumor burden index which have been reported by 
several research groups can provide indications of can-
cer recurrence, overall survival, response to systemic 
therapy of gastrointestinal cancer patients [12, 14, 15]. 
Somatic mutations of specific genes like TGFBR2, RHOA, 

ERBB2 in ctDNA were found as potential biomarkers of 
the response to immunotherapy or HER2-trageted thera-
pies [16–18]. However, most of these studies focused on 
genomic alterations of ctDNA at a specific timepoint 
during treatment. The dynamic molecular changes and 
their potential clinical meaning during the sequential 
chemotherapy in AGC have not been fully delineated.

In the present study, peripheral blood samples were 
serially and prospectively collected from AGC patients 
who undergone treatments by sequential chemotherapy 
regimens. Plasma ctDNA were analyzed utilizing a cus-
tomized NGS panel. Our aims were to identify the cor-
relations between the genomic features of ctDNA and 
the patients’ outcomes and to profile the molecular evo-
lutionary process of AGC patients during the sequential 
chemotherapy to further explore the potential therapeu-
tic options available to these patients.

Results
Clinical characteristics of enrolled patients
A total of 30 patients (20 males and 10 females) were 
enrolled in the study. The patients’ clinical characteristics 
are listed in Table 1. Seventeen cases had hematogenous 
metastases, including lung, liver, bone, and adrenal gland. 
Two chemotherapy regimens were administrated as 
first-line settings, which included platinum-based triplet 
regimen (Pt-3d; 14 cases) and platinum-based doublet 
regimen (Pt-2d; 16 cases) [19]. The details of the treat-
ment results are listed in Additional file 8: Table S1. The 
best objective response rate of the first-line treatment 
was 50% (15/30). At the end of the follow-up (January 
1st, 2021), four patients were still alive. The median over-
all survival (OS) of these patients was 9.5 months (range: 
2.8–27.6) and the median progression-free survival (PFS) 
of the first-line setting was 4.8 months (range: 1.5–41.7). 
A total of 108 peripheral blood samples were eligible for 
ctDNA analysis, and the median sampling times of the 
patients was 3 (range 2–10).

Baseline genomic features of ctDNA correlated 
with treatment response of first‑line regimens
Patients were stratified into R (responsive) and NR (non-
responsive) groups by their best objective response to 
first-line treatment. The clinical characteristics of the 

Conclusion: Baseline and dynamic changes of genomic features of ctDNA could be biomarkers for predicting 
response of platinum-based first-line chemotherapy in AGC patients. After treatment with standard chemotherapy 
regimens, convergent oncologic pathway enrichment was identified, which is yet characterized by inter-patient het-
erogenous gene-level CNVs.
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two groups were not significantly different (Additional 
file  8: Table  S2). At baseline, compared to NR group, R 
group showed significantly higher copy number insta-
bility (CNI) value (4070.3 ± 1648.7 vs 2406.2 ± 1107.3; 
P = 0.00058) and copy number variation (CNV) bur-
den (45 ± 37 vs 13 ± 21, P = 0.0036), whereas values of 
ctDNA content fraction (CCF) and tumor mutation 
burden (TMB) were not found to be significantly differ-
ent (Fig.  1A). Mean variant allele frequency (meanVAF) 
and maximum variant allele frequency (maxVAF) were 

also higher in R group (Additional file  1: Figure S1A). 
The best cut-off value of CNI to stratify R and NR groups 
was 2339.33 (Additional file  1: Figure S1B). Patients 
with CNI-high showed similar PFS (P = 0.78) and OS 
(P = 0.89) to those of patients with CNI-low (Additional 
file 1: Figure S1C).

At baseline, top 10 somatic single nucleotide vari-
ants (SNVs) were observed in TP53 (63%), LRP1B (30%), 
CDH1 (17%), ARID1A (13%), CTNNB1 (13%), KMT2D 
(10%), APC (10%), EPHA5 (10%), EPHB1 (10%) and 
ERBB4 (10%). The distributions of SNVs in R and NR 
groups were similar (Fig. 1B). The top 10 gene-level CNVs 
were observed in NFKBIA (77%), MCL1 (63%), MAP2K3 
(53%), HSP90AA1 (50%), CALR (40%), PDPR (37%), 
CREB1 (33%), SDC4 (30%), TOP1 (30%) and GNAS (27%). 
CNVs in R group were more frequent than those in NR 
group (Fig. 1C). Copy number gain in COL1A1, BRCA1, 
CD79B and STAT5A was only found in R group and was 
significantly correlated with treatment response of first-
line therapy (Fig. 1C). The summarized molecular infor-
mation on SNV and CNV was shown in Additional file 9: 
Table S3 and Additional file 10: Table S4, respectively.

Dynamic change of genomic alterations in ctDNA reflected 
clinical efficacy during chemotherapy
Values of TMB, CNI and CNV burden at partial response 
(PR) and stable disease (SD) were significantly lower than 
those samples at baseline (BL), whereas at progressive 
disease (PD) they were similar to BL values. The value of 
CCF at SD was also lower than that at BL, whereas no 
significant difference was observed between PR and BL 
(Fig. 2A). Values of meanVAF and maxVAF were not sig-
nificant different during the treatment (Additional file 2: 
Figure S2A).

The correlation between early change of genomic fea-
tures (i.e., delta values between 2nd and 1st sampling 
points) and the outcome of patients was analyzed. The 
cut-off value of ΔTMB was defined as −1, where 19 
patients were defined as ΔTMB-down (ΔTMB < −1) and 
11 patients were defined as ΔTMB-up (ΔTMB > −1). 
PFS of ΔTMB-down patients was longer than that of 
ΔTMB-up patients (6.1 months vs. 4.0 months; P < 0.001), 
where OS was similar between two groups (P = 0.13; 
Fig. 2B). For other genomic features, no correlation with 
PFS was identified (Additional file 3: Figure S3).

The dynamic changes of genomic features in ctDNA 
and tumor volumes are described in three typical cases 
(Fig. 2C). The values of CNI, CCF and TMB all decreased 
after the initial response to the first-line treatment and 
were kept at low level during the disease control. After 
disease progression, CNI, CCF and TMB continued to 
increase during the subsequent treatment.

Table 1 Clinical characteristics of 30 AGC patients

AGC  advanced gastric cancer

Clinical characteristics Case (n) Percentage

Gender

 Male 20 66.7

 Female 10 33.3

Age

 Median 64.0

 Range 37–77

Tumor site

 Fundus 6 20.0

 Body 10 33.3

 Antrum 14 46.7

Hematogenous metastasis

 Yes 17 56.7

 No 13 43.3

Regimens

 Pt-3d 14 46.7

  FLOT 11 –

  DOS 3 –

 Pt-2d 16 53.3

  SOX 12 –

  CAPOX 3 –

  FOLFOX 1 –

 PTX 5 16.7

  Paclitaxel 2 –

  PX 2 –

  Nab-paclitaxel 1 –

 CPT-11 6 20.0

  IRIR 4 –

  Irinotecan 1 –

  FOLFIRI 1 –

Treatment pattern

 Pt-3d to CPT-11 6 20.0

 Pt-2d to PTX 5 16.7

ORR of 1st-line

 PR 15 50.0

 SD 10 33.3

 PD 5 16.7



Page 4 of 14Xi et al. Journal of Translational Medicine          (2022) 20:365 

Fig.1 Baseline genomic features of ctDNA correlated with treatment response of first-line regimens. A: values of CCF, TMB, CNI and CNV burden in R 
and NR groups. B: landscape of baseline SNVs in all patients. C: landscape of baseline CNVs in all patients and four genes correlated with R group
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Fig.2 Dynamic change of genomic features in ctDNA correlated with clinical efficacy during chemotherapy. A: values of CCF, TMB, CNI and CNV 
burden at baseline (BL), progressive disease (PD) and during treatment (PR, SD). B: correlation between ΔTMB of ctDNA and patients’ outcomes of 
first-line therapy. C: dynamic changes of genomic features in ctDNA and tumor volumes in three typical cases
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Fluctuating changes of genomic alterations 
during sequential chemotherapy of AGC 
Fluctuating changes could be observed once comparisons 
were made in SNVs and CNVs landscape patterns of 30 
patients. Some SNVs (Additional file 2: Figure S2B) and 
CNVs (Additional file  2: Figure S2C) were undetectable 
at PR and SD, which were recovered at PD. TP53 and 
LRP1B were top two genes with somatic mutations. The 
percentages of detectable TP53 and LRP1B mutations 
were lower at PR compared to BL, where they increased 
at PD (Fig.  3A). For an individual patient, the mutation 
types and sites were the same during the whole course of 
the treatment (Fig. 3B). However, the sites of point muta-
tions of these two genes were highly heterogenous among 
the patients (Fig. 3C).

Enrichment of novel genomic alterations of ctDNA 
during treatment as revealed by KEGG analysis
Novel SNVs occurred in 130 genes during the whole 
course of the treatment. Only 26 genes were found in 
more than 2 patients. The most frequently novel SNVs 
were observed in KMT2C (5%), MED12 (5%), PPM1D 
(5%), CHEK2 (4%), FAT4 (4%), KMT2D (4%), MMP8 (4%) 
and PRKCI (4%). Novel CNVs occurred in 191 genes, 
and 109 of them were observed in more than 2 patients. 
The most frequently novel CNVs were observed in MCL 
(28%), CREB1 (23%), HSP90AA1 (21%), NFKBIA (18%), 
CALR (17%), IRS2 (13%), PDPR (12%), MAP2K3 (12%) 
and CCND3 (12%). Novel SNVs and CNVs were both 
more frequent in PD samples (Fig.  4A). KEGG analysis 
revealed more tumor related signaling pathways could be 
enriched by novel gene-level CNVs comparing with novel 
SNV. PI3K-Akt signaling pathway, chemical carcinogen-
esis-reactive oxygen species, Epstein-Barr virus infection 
and FoxO signaling pathway were the top enriched tumor 
related pathways (Fig. 4B). Pathways including platinum 
drug resistance and PD-L1 expression and PD-1 check-
point pathway in cancer were also enriched.

Impact of subsequent chemotherapy on genomic 
alterations of ctDNA driven by first‑line treatment
Peripheral blood samples collected from 10 patients dur-
ing treatments of subsequent regimens were analyzed. 
Both CNI and CNV burden values increased at second-
line post-treatment relative to baseline and first-line PD. 
CCF and TMB values were not significantly different at 
these three time points (Fig.  5A). The number of genes 
with novel CNVs at second-line post-treatment was more 
than that at first-line PD (186 vs. 45). KEGG analysis of 
novel SNVs at second-line post-treatment showed that 
cAMP signaling pathway and Fanconi anemia pathway 
were the top enriched tumor related pathway (Fig.  5B). 

Multiple common signaling pathways enriched by novel 
gene-level CNVs between first-line PD and second-line 
post-treatment could be identified. NF-kappa B signal-
ing pathway, platinum drug resistance pathway and FoxO 
signaling pathway could be enriched by novel CNVs at 
second-line post-treatment rather than at first-line PD 
(Fig. 5C).

Discussion
In the present study, both baseline and dynamic changes 
of genomic features in ctDNA were found to be corre-
lated with the treatment efficacy of first-line chemother-
apy for AGC patients. Fluctuating changes in SNVs and 
CNVs could be observed during sequential chemother-
apy, where the impact of the subsequent regimens on the 
molecular changes driven by first-line therapy was deter-
mined to be subtle. Under the pressure of conventional 
chemotherapy, novel SNVs and CNVs could be enriched 
into multiple common oncologic signaling pathways, 
where their distributions were established to be highly 
heterogenous among patients.

The correlation between the genomic features of 
ctDNA and the chemotherapy efficacy in AGC patients 
has been analyzed in previous studies, where most of the 
studies were focused on reporting the data of somatic 
mutations, including number of gene mutations and VAF 
[12, 14, 20]. Recent more detailed analyses of ctDNA 
revealed that the molecular changes correlated with ant-
HER2 targeted therapy and anti-PD-1 immunotherapy 
[15, 16, 18]. Nevertheless, ctDNA analysis during con-
ventional sequential chemotherapy—which is still the 
standard treatment pattern for most AGC patients in 
China—have not been fully explored.

We found that AGC patients who had higher baseline 
values of CNI and CNV burden in ctDNA were more 
likely to respond to platinum-based chemotherapy. 
Somatic CNVs were correlated with chromosome insta-
bility, which resulted from defects in mitosis and pre-
mitotic replication stress [21]. In AGC patients, it has 
been reported that high level chromosome instability 
was associated with sensitivity to platinum-based chemo-
therapy [22]. In colorectal cancer patients, tumors with 
increased copy number alterations also indicated sen-
sitivity to chemotherapy plus bevacizumab [23]. Also, 
chromosome instability has been found to be associated 
with intrinsic resistance to taxanes [24]. In our study, we 
found that both CNI and CNV burden in ctDNA recov-
ered to their baseline levels at treatment failure of first-
line regimens. The responses to paclitaxel-based and 
irinotecan-based regimens as second-line treatments 
were both found to be poor in our cohort. This was in line 
with the findings of previous randomized controlled tri-
als [9]. Our findings suggest that patients with high CNI 
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Fig.3 Fluctuating changes of genomic alterations during sequential chemotherapy. A: changes of percentages of TP53 and LRP1B mutations 
during treatment. B: fluctuating changes of TP53 and LRP1B frequency during treatment. C: involved mutation sites of TP53 and LRP1B 
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and high CNV burden may not benefit from the standard 
pattern of subsequent chemotherapy of AGC.

Even though the values of CNI and CNV burden at 
disease progression were similar to those at baseline, 
treatment resistance still occurred. Novel SNVs and 

CNVs were observed in ctDNA at PD. Compared with 
somatic mutations, platinum-based chemotherapy 
could cause more gene-level CNVs in ctDNA. A pan-
cancer study demonstrated the existence of a positive 
linear influence of CNVs on the expression of most of 

Fig.4 KEGG analysis of novel genomic alterations of ctDNA during treatment. A: landscapes of novel SNVs and CNVs in all patients. B: signaling 
pathways enriched by novel SNVs and CNVs
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Fig.5 Impact of subsequent chemotherapy on genomic alterations of ctDNA. A: values of CNI, CCF, TMB and CNV burden at BL, first-line PD and 
second-line posttreatment. B: signaling pathways enriched by novel SNVs and CNVs at first-line PD and second-line posttreatment



Page 10 of 14Xi et al. Journal of Translational Medicine          (2022) 20:365 

the genes, which was indicative of the presence of a 
direct effect of CNVs on gene transcriptional level [25]. 
Furthermore, gene-level CNVs are considered as com-
mon and important molecular alterations in tumors 
and are usually the upstream changes that trigger the 
cascade of signaling chaos [26]. In our study, KEGG 
analysis of novel CNVs showed that several oncologic 
and treatment-resistance pathways, including EGFR 
tyrosine kinase inhibitor resistance and platinum drug 
resistance, were enriched. These novel genomic altera-
tions could be attributed to resistance to the first-line 
chemotherapy.

Tumor evolutionary theory provides an alternative 
strategy to optimize the current treatment paradigm of 
cancer [27]. Spontaneous fitness trade-offs are the cost of 
evolution during tumor adaptation to the drastic external 
pressure of chemotherapy. These fitness trade-offs lead to 
the appearance of vulnerability in tumor cells to specific 
subsequent therapies [28–30]. This phenomenon creates 
an opportunity for oncologists to anticipate tumor evo-
lutionary process under the pressure of certain drugs and 
design an optimal subsequent regimen to prolong dis-
ease control [31]. However, although we found that genes 
with novel SNVs and CNVs could be identified during 
and after the whole course of the treatment, the corre-
sponding distributions among AGC patients were highly 
heterogeneous.

Molecular matched therapy has been performed based 
on molecular alterations detected in tumors. How-
ever, the benefit of this strategy in subsequent treat-
ment of gastric cancer is uncertain. SHIVA trial did 
not show a significant benefit, and the absolute time of 
survival extension in VIKTORY trial was reported to 
be only about 2 months [32, 33]. In our study, the genes 
involved in relevant signaling pathways were found to 
be highly heterogeneous among patients. It has been 
concluded that while common aberrant pathways might 
result in treatment failure, inter-patient heterogeneity 
and signaling crosstalk could lead to inefficacy of single-
targeting molecular agents [34]. Thus, a multi-targeting 
strategy should be employed in subsequent regimens 
of AGC patients. In EPOC1706 trial, lenvatinib plus 
pembrolizumab in the first-line or the second-line set-
ting of ACG patients showed an objective response 
rate of 69%, which was much higher than that of previ-
ously-employed standard second-line chemotherapy 
of AGC patients [35]. REGONIVO trial also showed a 
high response rate for the treatment of refractory AGC 
patients with regorafenib plus nivolumab [36]. The syn-
ergistic effects in place between lenvatinib/regorafenib 
and immune checkpoint inhibitors such as pembroli-
zumab and nivolumab, together with the fact that both 
lenvatinib and regorafenib are multi-targeting tyrosine 

kinase inhibitors of VEGFR, FGFR, PDGFR, KIT and 
RET, should both account for such enhanced clinical effi-
cacy[37, 38].

Tumor cells can adapt to external treatment pressure 
by acquisition of new genomic or epigenomic changes 
[39]. This means that the dynamics of tumor evolution 
should also be considered in devising therapeutic pat-
terns for cancer. In a study on the genomic landscape of 
relapsed acute lymphoblastic leukemia, the prevalence of 
relapse-specific somatic alterations in patients showing 
very early relapse (< 9 months from diagnosis) was found 
to be significantly less than that in the patients who 
exhibited an early or late relapse [40]. The median PFS 
of AGC patients in the first-line treatment is normally 
6–8 months. Despite being for different kinds of tumors, 
these results suggest that gastric cancer cells might not 
have long enough time to acquire new driver somatic 
alterations under treatment pressure. In this context, Li 
et  al. have also reported quite similar CNV profiles in 
paired tissue samples collected before and after neoadju-
vant chemotherapy from gastric cancer patients who had 
no response [41].

The present study bears certain limitations. First, the 
fact that only 30 patients were enrolled in our study made 
the sample size relatively small. Nevertheless, analysis 
of 108 ctDNA samples could present a representative 
view over the dynamic molecular changes during the 
treatment. Second, analysis of subsequent therapy was 
only performed in 10 patients. The fact that the avail-
able information found in the literature regarding the 
dynamic molecular changes during sequential chemo-
therapy of AGC patients is limited draws attention to the 
importance of the results of our study. Third, the analy-
sis of SNVs and gene-level CNVs in our study was not 
accompanied by the examination of the possible correla-
tions between them and the gene expression. Thus, it is 
our aim to investigate the transcriptional data in future 
studies using a larger sample size.

In summary, baseline and dynamic changes of genomic 
features of ctDNA could be biomarkers to predict treat-
ment efficacy of platinum-based first-line chemotherapy 
in AGC patients. After treatment with standard chemo-
therapy regimens, convergent oncologic pathway enrich-
ment yet characterized by inter-patient heterogenous 
gene-level CNVs was identified, which provided valuable 
information for the optimization of the sequential treat-
ment of AGC patients.

Materials and methods
Patients and samples
Peripheral blood samples were collected from gas-
tric cancer patients who were treated in Department of 
Oncology, Ruijin Hospital and met the following criteria: 
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(1) age over 18 years; (2) histologically confirmed HER2 
negative stomach adenocarcinoma; (3) treatment naïve 
locally advanced, recurrent or metastasis disease; (4) ade-
quate performance status and organ function to receive 
standard chemotherapy. Written informed consent was 
provided by all patients before collecting the peripheral 
blood samples. The protocol was approved by ethics 
committee of Ruijin Hospital, Shanghai Jiao Tong Uni-
versity School of Medicine, Shanghai, People’s Republic 
of China.

Blood samples were collected at times of baseline, 
efficacy assessment and disease progression. Samples 
collected at treatment failure of one regimen were con-
sidered as baseline samples for the regimen that followed. 
Regimens with at least two samples during treatment 
were eligible for further analysis. Treatment efficacy was 
assessed by radiographic examination (contrast enhanced 
CT or MRI) following the routine clinical protocols every 
8–9  weeks. Objective response was assessed according 
to the RECIST criteria (v1.1). Clinicopathological infor-
mation of all the patients was recorded, and PFS and OS 
were followed up. The best objective response during 
first-line treatment was used to stratify patients into R 
and NR groups. During the whole course of treatment, 
treatment response at each sampling timepoint was com-
pared with last timepoint according to RECIST criteria 
(v1.1). Tumor response of each timepoint was listed in 
Additional file 11: Table S5.

DNA extraction, sequencing and data processing
Plasma and blood cells were separated by centrifuga-
tion at 1600  g for 10  min. Cell-free DNA (cfDNA) was 
isolated from plasma using  MagMAX™ Cell-Free DNA 
Isolation Kit (Thermo Fisher Scientific, Waltham, MA, 
USA). Blood cell DNA was extracted from blood cells 
with TIANamp Blood DNA Kit (TIANGEN, Beijing, 
China). The concentration of DNA was measured by 
 Qubit® dsDNA HS Assay Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA), and the quality of DNA was 
assessed by Agilent 2100 BioAnalyzer (Agilent, USA). 
Genomic DNA was sheared into 150–200 base-pair (bp) 
fragments with Covaris M220 Focused-ultrasonicator 
Instrument (Covaris, Massachusetts, USA). Fragmented 
DNA was used to construct the library using KAPA 
Hyper Preparation Kit (Kapa Biosystems, USA) accord-
ing to the manufacturer’s instruction. DNA was hybrid-
ized to one in-house panel (Genecast, Wuxi, China) 
covering 2.43 Mb of the human genome with 1632 genes 
(Additional file  12: Table  S6). The captured library was 
sequenced on Illumina NovaSeq 6000 according to the 
manufacturer’s instruction, producing paired-end reads 
with the length of each end as 150 bp.

Preliminary sequencing results in BCL format were 
converted to FASTQ files using bcl2fastq (v2.20.0). 
FASTQ format reads were processed using Trimmomatic 
(v0.39) [42] for adapter trimming and low-quality reads 
filtering. Processed reads were mapped to the reference 
genome (hg19) using BWA (0.7.17) [43]. Mapped results 
were sorted and marked for duplications using Picard 
toolkit (version 2.1.0,  https:// broad insti tute. github. io/ 
picard/), and then were realigned using GATK (version 
3.7) [44]. The quality control data were shown in Addi-
tional file 13: Table S7. The average sequencing depth of 
CF and BC samples was > 1000 × and > 200 × , respec-
tively. The distribution of fragment sizes for each sample 
is shown in Additional file 4: Figure S4.

Somatic SNV calling
SNVs were called via VarDict (v1.5.1) and FreeBayes 
(v1.2.0) from processed mapping results in pair of 
tumor and control samples, respectively. The candidate 
somatic mutations were annotated with ANNOVAR 
(2015Jun17) [45] and then were filtered by ExAC (http:// 
exac. broad insti tute. org), gnomAD (http:// gnomad- sg. 
org/), COSMIC (https:// cancer. sanger. ac. uk/ cosmic), 
dbSNP (https:// www. ncbi. nlm. nih. gov/ snp/) databases. 
Nonsynonymous mutations among the exonic and splic-
ing regions were kept for the final somatic mutation data 
set (Additional file  5: Figure S5). The filter parameters 
of SNV include the following criteria: (1) exclude muta-
tions located in intergenic regions or intronic regions. (2) 
exclude blacklisted mutations. (3) exclude mutations with 
sequencing depth  < 120. (4) exclude mutations with allele 
frequency  < 1%. (5) exclude mutations with reads  < 5. (6) 
exclude synonymous mutations. (7) exclude allele fre-
quency  ≥ 0.002 in the Exome Aggregation Consortum 
(ExAC) database. (8) exclude mutations also present in 
blood control samples and the frequency in tumor sam-
ple is less than five times frequency in blood control sam-
ple (Additional file 14: Table S8).

Somatic CNV calling
Taking blood cell sample as the control, somatic CNVs 
were called from plasma sample for each gene included 
in the captured panel using CNVkit (0.9.5.dev0) with 
batch mode [46]. In the process of calling, biases of read 
depth, GC content and repetitive sequence were removed 
through normalization (Additional file 6: Figure S6). The 
filtering criterion of CNV is the number of capture region 
more than 5, and the threshold of gain and loss are copy 
ratio  > 2.5 and copy ratio  < 1.5, respectively. The CNV 
value was defined as log2 transformed ratio of normal-
ized read depth on each gene between plasma and blood 
cell samples (Additional file 15: Table S9).

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://gnomad-sg.org/
http://gnomad-sg.org/
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/snp/
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Calculation of tumor mutation burden (TMB)
TMB were determined by the nonsynonymous somatic 
mutations among the exonic and splicing regions. 
Alterations likely or known to be bona fide oncogenic 
drivers were excluded (Additional file  7: Figure S7). 
TMB per megabase were calculated with the total num-
ber of mutations divided by the total bases of the target 
panel with  ≥ 500 bp coverage.

Definition of meanVAF and maxVAF
The maxVAF value equals to the maximum VAF of all 
somatic mutations in each sample. The meanVAF value 
was defined as the mean value of all mutations’ VAFs in 
each sample.

Calculation of CNV burden
CNV burden is equal to the total number of CNVs in 
each sample. Considering the two types of CNVs, the 
CNV burden was divided into gain and loss. The total 
CNV of gain and total CNV of loss were defined as the 
CNV gain burden and CNV loss burden, respectively.

Estimation of ctDNA content fraction (CCF)
CCF of plasma samples was estimated by a maximum 
likelihood model based on SNVs and CNVs in the 
paired blood cell and plasma samples. Somatic and 
germline SNPs that met the following criteria were 
used to build the model: (1) with a minimum depth of 
50 × in the paired samples; (2) not on genes with high 
polymorphism; (3) no InDels in the 50  bp upstream 
or downstream regions; (4) not in a copy number gain 
region; (5) germline SNPs with significantly different 
variant allele frequencies (VAFs) in the paired samples, 
or somatic SNPs with VAFs significantly higher than 
background noise. These SNPs were defined as inform-
ative SNPs and were clustered into multiple groups 
according to their VAFs, local copy numbers and hypo-
thetic genotypes. The hypothetic genotypes in cfDNA 
and ctDNA were determined by the VAFs in the paired 
samples and the copy number in the plasma sample. 
Each cluster represents a unique ctDNA source. We 
then calculated the likelihood of observing SNPs under 
given CCFs in each cluster. By maximizing the likeli-
hood, CCF of each cluster could therefore be estimated. 
Cluster with the highest CCF was from the main source 
of ctDNA, and its CCF was the output of the final 
estimation.

Estimation of copy number instability (CNI)
After correction for GC content and length of target 
region using proprietary algorithms for each region, the 
read counts were transformed into log2 ratios and were 

converted into Z-score based on Gaussian transforma-
tions versus a normal control group (n = 30). The target 
regions that satisfied the Z-score greater than the 95th 
percentile plus twice-times absolute standard deviation 
of the normal control group were retained, and these 
Z-scores were summed as the CNI score.

Statistical analysis
For the comparison of continuous variables, we chose 
Wilcoxon rank sum test. When a continuous variable was 
transformed into a categorical one, the best cutoff was 
determined through pROC (1.18.0) package [47]. Com-
parisons between categorical variables were conducted 
using Fisher’s exact test. Kaplan–Meier survival curves 
with log-rank test were generated by survminer (0.4.9) 
and survival packages (3.3–1). The visualization of gene 
alteration landscapes was profiled by ComplexHeat-
map package (2.12.0) [48]. The KEGG analysis of newly 
emerged gene alterations was performed on clusterPro-
filer package (v4.4.4) [49]. We customized 1632 panel 
genes as background gene sets for pathways enrichment. 
All analyses were carried on R (4.2.1) program. P < 0.05 
was considered as statistically significant.
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