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Abstract 

Background: Cancer screening provides the opportunity to detect cancer early, ideally before symptom onset and 
metastasis, and offers an increased opportunity for a better prognosis. The ideal biomarkers for cancer screening 
should discriminate individuals who have not developed invasive cancer yet but are destined to do so from healthy 
subjects. However, most cancers lack effective screening recommendations. Therefore, further studies on novel 
screening strategies are urgently required.

Methods: We used a simple suboptimal inoculation melanoma mouse model to obtain ‘pre-diagnostic samples’ of 
mice with macroscopic melanomas. High-throughput sequencing and bioinformatic analysis were employed to iden-
tify differentially expressed RNAs in platelet signatures of mice injected with a suboptimal number of melanoma cells 
(eDEGs) compared with mice with macroscopic melanomas and negative controls. Moreover, 36 genes selected from 
the eDEGs via bioinformatics analysis were verified in a mouse validation cohort via quantitative real-time PCR. LASSO 
regression was utilized to generate the prediction models with gene expression signatures as the best predictors for 
occult tumor progression in mice.

Results: These RNAs identified from eDEGs of mice injected with a suboptimal number of cancer cells were strongly 
enriched in pathways related to immune response and regulation. The prediction models generated by 36 gene qPCR 
verification data showed great diagnostic efficacy and predictive value in our murine validation cohort, and could 
discriminate mice with occult tumors from control group (area under curve (AUC) of 0.935 (training data) and 0.912 
(testing data)) (gene signature including Cd19, Cdkn1a, S100a9, Tap1, and Tnfrsf1b) and also from macroscopic tumor 
group (AUC of 0.920 (training data) and 0.936 (testing data)) (gene signature including Ccr7, Cd4, Kmt2d, and Ly6e).

Conclusions: Our proof-of-concept study provides evidence for potential clinical relevance of blood platelets as a 
platform for liquid biopsy-based early detection of cancer.
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Background
Elegant studies have been designed to identify can-
cer biomarkers or signatures of indicating how patients 
would respond to therapies [1, 2]. These previous studies 
aim to diagnose malignancy or to examine the prognosis 
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such as future metastasis or long-term survival. However, 
the ideal biomarkers for the early detection of cancer 
should discriminate individuals with occult cancer that is 
destined to progress from healthy subjects.

Traditional cancer screening methods have demon-
strated low accuracy and efficacy, while novel cancer 
markers such as circulating tumor cells (CTCs) and cir-
culating tumor DNA (ctDNA), which offer new genomic 
approaches through liquid biopsies, still have limited 
efficiency [3–6]. Indeed there are previous longitudinal 
studies using pre-diagnostic serums to screen for novel 
biomarkers of early cancer detection. These studies uti-
lized pre-diagnostic serum to detect tumor-specific anti-
gens or auto-antibodies for cancer risk prediction with 
limited sensitivity [7–10]. Novel cancer markers such 
as ctDNA have also promised to be a sensitive and spe-
cific test for cancer screening [11, 12]. However, ctDNA 
testing has several limitations for a screening platform 
compared with platelet RNA testing such as its limited 
abundance in blood, difficulty in extraction, depend-
ency on known hotspots and its high expense. Therefore, 
further studies searching for new blood-based biomark-
ers for early cancer detection are now urgently required. 
Blood platelets, which are traditionally known for their 
function in hemostasis and thrombosis, have emerged as 
important participants in tumor pathogenesis [13, 14]. 
Recent studies have indicated significant platelet involve-
ment in cancer growth and metastasis [15, 16]. It has 
been reported that tumor-educated platelets (TEPs) may 
have potential for cancer companion diagnostics [17–20]. 
However, whether platelets could serve as a platform for 
cancer risk assessment or early disease diagnostics still 
merits further investigation.

Methods
Mice
C57BL/6 mice were bred in the Laboratory Animal 
Center, Health Science Center, Xi’an Jiaotong University. 
All mice were female and aged between 6 and 8 weeks at 
the beginning of all experiments. Animal experiments 
were approved by the Animal Ethics Committee of Xi’an 
Jiaotong University. All animal experiments were set with 
a maximum endpoint at a tumor volume of 1000  mm3.

B16F10 cell line
B16F10 cells negative for mycoplasma contamination 
were cultured and passaged in RPMI-1640 medium 
containing 10% fetal calf serum (FCS) (Gemini, USA) at 
37  °C/5%  CO2. For animal inoculations, cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
(Hyclone, USA) supplemented with 10% FCS and 5  µg/
ml plasmocin prophylactic reagent (InvivoGen, Cat.: ant-
mpp, USA) at 37  °C/5%  CO2 to induce better melanin 

production. B16F10 cell line was generously provided 
by Dr Hui Zhang from Institute of Human Virology, Sun 
Yat-sen University and originally purchased from the 
ATCC.

B16F10 melanoma inoculation
For melanoma inoculation, B16F10 melanoma cells 
were harvested by washing with phosphate buffer saline 
(PBS), then incubating cells at 37  °C for 1–2  min with 
1 × Trypsin/EDTA (Gibco, USA) solution and wash-
ing with Hanks’ balanced saline solution (HBSS) twice. 
For B16F10 inoculation, the right flanks of mice were 
shaved with a mini-razor and cells (2 ×  103, 5 ×  103, 
1 ×  104 and 1 ×  105 cells per mouse for each group) were 
suspended in 100  μl HBSS and then injected under the 
right flank subcutaneously using a 30G needle. Tumor 
formation was monitored by inspecting via a magni-
fying scope and measured with a caliper periodically 
(tumor volume was estimated using this formula: vol-
ume = length × width × height × 0.5) [21].

Blood sample collection
Blood samples were collected from retro-orbital sinuses 
of C57BL/6 mice 14 days after inoculation. For terminal 
or nonterminal blood collection, mice were fully anesthe-
tized with isoflurane and blood samples were collected by 
puncturing the retro-orbital sinuses of mice using micro-
hematocrit capillary tubes. Blood was collected into a 
tube containing the anti-coagulant EDTA. After nonter-
minal blood collection (less than 1% of body weight, 
approximately 150–200 μl), the tube was withdrawn and 
a slight pressure was put on the eye with a sterile cotton 
swab to ensure hemostasis. After terminal blood collec-
tion, mice were euthanized by cervical dislocation.

Isolation of platelet and PBMC RNA
Blood platelets isolation was performed as described pre-
viously [20, 22]. Briefly, anti-coagulated blood was centri-
fuged at 180×g at room temperature for 10 min, yielding 
platelet-rich plasma. Platelets were isolated from the 
platelet-rich plasma by centrifugation at room tempera-
ture for 10 min at 1250 × g. The platelet pellet was lysed 
in TRIzol Reagent (Invitrogen, Thermofisher Scientific, 
USA) and frozen at − 80 °C for future use.

The bottom layer of the centrifuged blood sample 
from the first step of platelet isolation was further used 
for peripheral blood mononuclear cell (PBMC) isolation 
using mouse PBMC isolation kit (TBD science, Tianjin) 
following the manufacturer’s instructions. Briefly, the 
aforementioned bottom layer was mixed with the same 
volume of diluting solution provided by the manufacturer 
and the mixture was carefully layered on the PBMC iso-
lation reagent of the same volume in a sterile centrifuge 
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tube. The tube was then centrifuged at 950 × g for 30 min 
at room temperature. PBMC layer was transferred into 
a new tube from the interphase with a transfer pipette 
and washed twice by mixing with 10 ml washing solution 
(also provided by the manufacturer) followed by centri-
fuging at 250 × g for 10 min. The final PBMC pellet was 
lysed in TRIzol and kept in -80 °C for further use.

Next generation sequencing
Next generation sequencing was performed in Novogene 
(Tianjin, China). Briefly, platelet or PBMC RNA samples 
were assessed for quantity, purity and integrity using 
NanoPhotometer® spectrophotometer (IMPLEN, CA, 
USA) and RNA Nano 6000 Assay Kit of Bioanalyzer 2100 
system (Agilent Technologies, CA, USA). Samples were 
pooled to satisfy the quantity criteria of RNA sequenc-
ing and a minimum amount of 20  ng RNA per pooled 
sample was used as input material for the RNA sample 
preparations. For platelet samples, the numbers of mice 
sacrificed for 5 pooled samples in three groups were as 
follows: 3, 4, 5, 3 and 5 mice for O group (optimal inocu-
lation group, mice inoculated with 1 ×  105 B16F10 cells); 
10, 10, 9, 11 and 10 mice for S group (suboptimal inocu-
lation group, mice inoculated with 2 ×  103 B16F10 cells); 
10, 5, 5, 10 and 10 mice for C group (negative control 
group, mice injected with HBSS). For PBMC samples, the 
numbers of mice sacrificed for 5 pooled samples in three 
groups were as follows: 3, 4, 5, 3 and 5 mice for O group; 
5, 4, 5, 5 and 5 mice for S group; 5 mice for each sample 
in C group.

Sequencing libraries were generated using NEBNext® 
UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) 
following the manufacturer’s recommendations with 
index codes added to attribute sequences to each sample. 
Briefly, mRNA was purified from total RNA using poly-T 
oligo-attached magnetic beads. Fragmentation of mRNA 
was carried out followed by cDNA synthesis. Sequenc-
ing libraries were created by converting RNA to cDNA 
via reverse transcription and adding specialized adapt-
ers to both ends. Next, library fragments were purified 
and then PCR was performed with Phusion High-Fidelity 
DNA polymerase. PCR products were purified (AMPure 
XP system) and library quality was assessed on the Agi-
lent Bioanalyzer 2100 system (Agilent Technologies, CA, 
USA). Finally, qualified libraries were sequenced on an 
Illumina Novaseq platform.

Sequencing data analysis
Novogene provided sequence alignment, data mapping 
and differential expression analysis. Briefly, raw data of 
fastq format were processed to obtain clean reads with 
high quality by removing reads containing adapter, reads 
containing ploy-N and reads of low quality from raw 

data. Clean reads were aligned to mus musculus refer-
ence genome using Hisat2 v2.0.5 alignment program. The 
R package featureCounts v1.5.0-p3 was applied to count 
the reads numbers mapped to each gene [23]. And then 
FPKM (fragments per kilobase of transcript sequence 
per millions base pairs sequenced) of each gene was cal-
culated based on the length of the gene and read count 
mapped to this gene.

Differential expression analysis was performed using 
DESeq2 R package 1.16.1 [24]. The resulting P values were 
adjusted using the Benjamini and Hochberg’s approach 
for controlling the false discovery rates. Genes with P 
values < 0.05 were assigned as differentially expressed for 
pairwise comparisons. Differentially expressed genes for 
subsequent screening of distinct markers of early-early 
cancer (eDEGs) must meet these requirements:  log2(S vs. 
C Fold Change) > 0, P < 0.05,  log2(S vs. O Fold Change) > 0, 
P < 0.05; or  log2(S vs. C Fold Change) < 0, P < 0.05,  log2(S 
vs. O Fold Change) < 0, P < 0.05. O group, optimal inocu-
lation group, mice inoculated with 1 ×  105 B16F10 cells; 
S group, suboptimal inoculation group, mice inoculated 
with 2 ×  103 B16F10 cells; C group, negative control 
group, mice injected with HBSS.

Bioinformatics analyses and data visualizations
Data visualizations were performed using R (version 
3.6.3) [25]. Heatmaps and clusterings were generated 
using pheatmap package [26]. Dot plots and bubble 
plots were generated using ggplot2 and corrplot pack-
ages [27, 28]. Pathway enrichment analyses of differen-
tially expressed genes in suboptimal inoculation group 
(eDEGs) were performed using clusterProfiler pack-
age with reference from KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathways with P values adjusted by 
Benjamini and Hochberg method [29, 30]. The protein–
protein interaction (PPI) network of eDEGs was retrieved 
from STRING database [31] and reconstructed using 
Cytoscape [32]. Each node’s degree of connectivity in the 
network was calculated. Molecular COmplex DEtection 
(MCODE) [33] was used to find gene clusters based on 
topology locating densely connected regions.

Quantitative real‑time PCR
Blood platelet RNA was isolated as described above. 
Platelet RNA was then converted to complementary 
cDNA using PrimeScript RT Master Mix (Takara) 
according to the manufacturer’s instructions. Quanti-
tative real-time PCR (qPCR) was performed with TB 
Green Premix Ex Taq (Takara, Beijing) using LightCycler 
96 System (Roche Life Science, USA) with parameters 
adjusted according to the PCR cycler and the enzyme’s 
manuals. The reaction process was as follows: preincuba-
tion at 95 °C for 30 s; 40 cycles of 5 s at 95 °C and 30 s at 
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55  °C for annealing and extension; melting at 95  °C for 
5  s, 60  °C for 60 s and 95  °C for 1  s; cooling for 30 s at 
50  °C. Cycle-threshold (Ct) values were determined for 
each gene and normalized to the housekeeping genes 
Actb, Gapdh, Gusb, Gnas and Oaz1, which were validated 
previously as reliable reference genes for platelet RNA 
qPCR [34, 35].

Statistic analyses
All statistical analyses were performed in PASW Statis-
tics 18 (SPSS, USA) or Prism 8 (Graphpad, USA) and 
were two-sided. All experiments were performed with 
replicates as indicated, either with representative data 
shown, or with pooled data shown. Figures with pooled 
data from multiple experiments included all experi-
ments performed. All data reflected multiple independ-
ent experiments with at least 3 mice per experiment, in 
which similar results were obtained.

Kaplan–Meier curves were generated to illustrate the 
relationship between percentage of tumor-free mice and 
time after inoculation. Mantel-Cox tests were used to test 
statistic significance.

Joinpoint software version 4.8.0.1 (National Cancer 
Institute, USA) was used to analyze tumor growth data 
for multi-phase regression in order to determine when 
the tumor went from occult state into fast progress-
ing phase [36]. A maximum of 1 joinpoint was allowed 
based on the number of data points and previous stud-
ies on the role of angiogenesis in tumor dormancy [37]. 
The statistic significance of the change in tumor growth 
trend over time was tested using a Monte Carlo Permu-
tation method embedded in the Joinpoint software [36]. 
Blood samples from mice whose tumor became visible 
more than 5  days after blood collection (19  days post-
inoculation) were categorized as early-early group (E 
group). Alternatively, samples from mice with a mini-
tumor (tumor volume < 1  mm3) on the day of blood col-
lection (14  days post-inoculation) that did not progress 
for at least 20 days since inoculation (joinpoint ≥ 20, Per-
mutation test P value < 0.05) were also classified as early-
early group (E group). Blood samples from mice with 
macroscopic and palpable tumors (tumor volume > 30 
 mm3) were categorized as melanoma group (M group) 
and blood samples from mice injected with HBSS were in 
negative control group (C group).

Statistic analyses of qPCR results were performed via 
SPSS 18.0. Kruskal–Wallis non-parametric test was exe-
cuted and adjusted P value below 0.05 was assigned as sig-
nificant. Samples with more than 10 genes with invalid Ct 
values (no signal within 40 cycles of PCR due to low RNA 
quantity) out of 36 markers were excluded. Then genes 
with invalid Ct values in at least 5 samples in both depend-
ent variable groups (probably due to low expression levels 

of certain chosen markers in platelets) were not included 
for subsequent variable selection via LASSO binary regres-
sion analysis.

The Least Absolute Shrinkage and Selection Operator 
(LASSO) model is a shrinkage method for regression with 
high-dimensional predictors, which can preserve valuable 
variables from a large and potentially multicollinear set of 
variables, and avoid overfitting. This method is suited for 
analyzing gene expression data where multicollinearity of 
selected genes in related biological pathways may occur. 
We performed LASSO binary logistic regression using 
glmnet R package [38]. Data were randomly divided into 
training set (70%) and testing set (30%). We utilized ten-
fold cross-validation to select the penalty term λ with the 
alpha of 1. The binomial deviance was set as measures of 
the predictive performance of the fitted models. The built-
in function in glmnet package produced the λ that mini-
mized the binomial deviance. The coefficients of selected 
variables were obtained through the penalizing process. 
The seed was set to 10 for data replication. The prediction 
score formulas for the discrimination of early-early tumor 
(occult tumor, E group) from negative control group (C 
group) or from macroscopic melanoma group (M group) 
were established as follows: Score = Intercept + Σ Coeffi-
cient ×  (CtVariable –  CtRef).

Ridge regression and elastic net regression were also 
performed as well as LASSO regression for comparison 
of models. For ridge regression, data were also randomly 
divided into training set (70%) and testing set (30%). We 
utilized ten-fold cross-validation to select the penalty term 
λ with the alpha of 0. The binomial deviance was set as 
measures of the predictive performance of the fitted mod-
els. The built-in function in glmnet package produced the 
λ that minimized the binomial deviance. The coefficients 
of variables were obtained through the penalizing pro-
cess. For elastic net regression, we used caret and tidyverse 
packages to determine the optimal alpha and lamda combi-
nation [39, 40]. The seed was set to 10 for data replication. 
The prediction score formulas were as described above. 
Root mean square error (RMSE) were calculated and com-
pared between 3 regression models.

Receiver operating characteristic  (ROC) curves were 
constructed and area under curve (AUC) was calculated 
using SPSS 18.0. Probability statistics for ROC were calcu-
lated according to the prediction score formulas generated 
from LASSO regression analyses described above: Prob-
ability =  eScore / (1 +  eScore).

Results
Inoculation of suboptimal numbers of tumor cells can 
induce delayed melanoma formation in mice
To investigate these issues, we established a melanoma 
mouse model by inoculating C57BL/6 mice with a 
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suboptimal number of tumor cells, which were named an 
“early-early” mouse model since the tumors in our model 
were occult or microscopic before they rapidly grew and 
became macroscopic. C57BL/6 mice were subcutane-
ously injected with several concentrations of B16F10 
cells. In contrast with the rapid tumor development in 
mice from the group injected with a optimal number of 
1 ×  105 cells per mouse established by previous studies 
[41, 42], inoculation of mice with lower numbers of cells 
postponed the onset of tumor formation, with variable 
growth kinetics, as evidenced by the dispersion of growth 
curves (Fig. 1a). In groups injected with 1 ×  105 cells and 
1 ×  104 cells per mouse, all mice developed tumors which 
became visible in 2 weeks and 3 weeks post-inoculation 
respectively (Fig. 1a, b). However, injection with subop-
timal numbers of cells (5 ×  103 cells or 2 ×  103 cells per 
mouse) induced tumors in some subjects that remained 
small and did not progress for as long as 6  weeks after 
inoculation (Fig.  1a, b). Around 76% of mice (100 out 
of 131) injected with 5 ×  103 cells per mouse developed 
tumors that became visible at 2–6  weeks after inocula-
tion, while only 13% of mice (8 out of 60) injected with 
2 ×  103 cells per mouse formed visible tumors within 
6  weeks post-inoculation (Fig.  1b, c). Moreover, around 
24% of mice from the group injected with 5 ×  103 cells 
per mouse and 87% of mice injected with 2 ×  103 cells 
did not develop melanomas within 6 weeks after inocula-
tion and remained tumor-free for a prolonged period of 
15 weeks post-inoculation (Fig. 1b, c).

Since some tumors developed late (Fig. 1a), these “late-
developer” mice harbored occult or microscopic melano-
mas after inoculation for weeks before they progressed 
into macroscopic tumors afterwards. We proposed that 
the “pre-diagnostic” blood samples from mice inoculated 
with a suboptimal number of tumor cells could be used 
for screening novel “early-early” cancer biomarkers.

Our data showed that samples from mice inoculated 
with higher number of cells could not be used for RNA 
sequencing for “early-early” model, since tumors were 
already in late stage (Fig. 1). Since the group inoculated 
with 2 ×  103 B16F10 cells could yield a very low propor-
tion of mice with visible tumors by 14  days for blood 
sample collection (Fig. 1), we could euthanize most of the 
mice for RNA sequencing. So we chose 2 ×  103 B16F10 
cells for inoculation of “early-early” group for maximum 
usage of mice.

Platelet mRNA profiles of mice inoculated 
with a suboptimal number of tumor cells are distinct 
from those of both healthy and tumor‑bearing mice
To screen for novel “early-early” cancer biomarkers in our 
melanoma model, we collected blood samples from opti-
mal inoculation group (1 ×  105 cells per mouse, O group), 
suboptimal inoculation group (2 ×  103 cells per mouse, S 
group), and negative control group (C group) on day 14 
post-injection, when optimal inoculation group all devel-
oped palpable tumors and suboptimal inoculation group 
did not form visible tumors yet, indicating the tumors 

Fig. 1 Tumor growth kinetics in C57BL/6 mice inoculated with different numbers of B16F10 cells. a Tumor growth curves after inoculation with 
optimal and suboptimal numbers of B16F10 cells. b, c Proportion of tumor-free and tumor-bearing mice following inoculation with B16F10 cells. 
Data pooled from n = 8 (1 ×  105 cells per mouse, red), n = 12 (1 ×  104 cells per mouse, dark blue), n = 29 (5 ×  103 cells per mouse, blue) and n = 14 
(2 ×  103 cells per mouse, light blue) biologically independent experiments with n = 37 mice (1 ×  105 cells per mouse), n = 54 mice (1 ×  104 cells per 
mouse), n = 131 mice (5 ×  103 cells per mouse) and n = 60 mice (2 ×  103 cells per mouse). ****P <  10–10, log-rank Mantel-Cox test (b)
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might still be occult (Fig. 2a). Mice were autopsied after 
blood collection and examined under a magnifying scope 
as well as pathological examination to confirm there were 
no visible tumors in S group (Additional file 1: Fig. S1a).

Recently, it has been reported that tumor-educated 
platelets (TEPs) may have potential for cancer compan-
ion diagnostics [17–20]. Therefore, we isolated blood 
platelets for further study as well as peripheral blood 
mononuclear cells (PBMCs) for comparison. Both 
platelet RNA and PBMC RNA were isolated and evalu-
ated for quantity and quality. Total platelet RNA sam-
ples of 20 mice in O group, 50 mice in S group and 40 
mice in C group were pooled into 5 samples per group 
in order to meet the quantity criteria of RNA sequenc-
ing. The disparity in platelet RNA quantity of mice from 
different groups was probably due to higher platelet 
production via thrombocytosis in tumor-bearing mice 
[43]. Total PBMC RNA samples of 20 mice in O group, 
24 in S group and 25 in C group were also pooled into 
5 samples per group to guarantee sufficient RNA quan-
tity. Pooled platelet and PBMC RNA samples were then 

processed for RNA sequencing. Platelet RNA sequenc-
ing yielded a mean read count of around 53 million 
clean reads per sample, while PBMC RNA sequencing 
yielded about 44 million clean reads per sample. After 
genome mapping of RNA reads, we identified among 
the platelet RNAs known platelet-abundant genes, such 
as beta-2 microglobulin (B2m), ferritin heavy polypep-
tide 1 (Fth1), platelet factor 4 (Pf4), pro-platelet basic 
protein (Ppbp) and thymosin, beta 4, X chromosome 
(Tmsb4x) (Additional file  1: Fig. S1b), which yielded 
much higher read counts than average level. The 
obtained platelet RNA profiles correlated with PBMC 
RNA profiles, but the correlation between platelet and 
PBMC RNA profiles was much less prominent than that 
between samples within the platelet or PBMC group 
(Additional file  1: Fig. S1c). Moreover, mRNAs such 
as B2m, Tmsb4x, Ppbp, regulator of G-protein signal-
ing 18 (Rgs18), cathepsin B ( Ctsb), calreticulin (Calr), 
eukaryotic translation elongation factor 2 (Eef2) and 
insulin-like growth factor binding protein 4 ( Igfbp4), 
which were previously reported differentially expressed 

Fig. 2 Distinct platelet RNA profiles of mice inoculated with a suboptimal number of B16F10 cells. a Animal model and platelet mRNA sequencing 
workflow, as starting from B16F10 cell injection, terminal blood collection, to platelet isolation, and mRNA sequencing. C group: negative control 
group, mice injected with HBSS (Hank’s Balanced Salt Solution); S group: suboptimal inoculation group, mice inoculated with 2 ×  103 B16F10 cells; 
O group, optimal inoculation group, mice inoculated with 1 ×  105 B16F10 cells (a–d). b Correlation plots of mRNAs detected in platelets of S group, 
C group and O group mice, including highlighted increased (red) and decreased (blue) platelet mRNAs. NRC, normalized read counts (mean of 
group). r value calculated from Pearson’s correlation test. c Venn diagram of differentially expressed genes from pairwise comparisons. d Heatmap of 
hierarchical clustering of platelet mRNA profiles of S group (beige), C group (green) and O group (orange). Data pooled (b, c) from n = 5 biologically 
independent experiments with n = 50 (S group) or n = 40 (C group) and n = 20 (O group) mice, or data representing all 5 independent experiments 
(d)
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genes between platelet and PBMC profiles [44], were 
also differentially expressed in our sequencing data 
(Additional file 1: Fig. S1d).

Since our samples were pooled from about 10 mice 
into 1 sequencing sample, the S group inevitably 
included mice that may never develop tumors. This 
strategy would still allow us to identify the differen-
tially expressed genes between S group, C group and 
O group, only with lower fold-change results, which is 
why we set the  log2(fold-change) to 0 as threshold for 
differentially expressed gene screening.

A total of 760 out of 24,774 mRNAs were increased 
and 443 out of 24,774 mRNAs were decreased in plate-
let samples of S group as compared to samples of C 
group, while presenting a strong correlation between 
these platelet profiles (r = 0.991, Pearson’s correlation) 
(Fig.  2b left). A total of 1352 out of 24,231 mRNAs 
were increased and 1,083 mRNAs were decreased in S 
group compared with O group (r = 0.982, Pearson’s cor-
relation) (Fig.  2b middle). Out of 23,923 mRNAs, 522 
were increased and 428 were decreased in O group 
compared to C group (r = 0.998, Pearson’s correlation) 
(Fig.  2b right). For PBMC samples, a total of 239 out 
of 31,625 mRNAs were increased and 251 out of 31,625 
mRNAs were decreased in PBMC samples of S group 
as compared to samples of C group, also presenting a 
strong correlation between these PBMC mRNA pro-
files (r = 0.996, Pearson’s correlation) (Additional file 1: 
Fig. S2a left). A total of 732 out of 31,263 mRNAs 
were increased and 1,477 mRNAs were decreased in 
S group compared with O group (r = 0.833, Pearson’s 
correlation) (Additional file  1: Fig. S2a middle). Out 
of 26,630 mRNAs, 1,676 were increased and 868 were 
decreased in O group compared to C group (r = 0.803, 
Pearson’s correlation) (Additional file 1: Fig. S2a right). 
We detected in platelets 3,458 and in PBMCs 3,694 dif-
ferentially expressed protein coding and non-coding 
RNAs by multiple pairwise comparisons, which were 
used for subsequent investigations (Fig. 2c, Additional 
file 1: Fig. S2b). Hierarchical clustering based on differ-
entially detected platelet mRNAs distinguished 3 sam-
ple groups with minor overlap, while clustering based 
on PBMC mRNAs could not quite discriminate S group 
from C group (Fig. 2d, Additional file 1: Fig. S2c).

Blood platelets provide novel biomarkers to predict occult 
tumor progression in mice
To screen for distinct markers of occult melanoma, we 
searched for genes differentially expressed in S group 
compared with both C group and O group (eDEGs, “e” as 
in “early-early mouse model”) (Fig. 3a, details in “Meth-
ods”). Compared with 524 eDEGs (436 were protein-cod-
ing genes) from platelet data, there were only 149 genes 
(only 63 were protein-coding genes) in PBMC data that 
fulfilled our criteria (Additional file  2: Tables S9, Addi-
tional file 3: Table S10). KEGG pathway analysis revealed 
that these differentially expressed mRNAs from platelets 
of suboptimal inoculation group (eDEGs) were strongly 
enriched for biological processes related with immune 
response or regulation, such as “cytokine receptor inter-
action” and “cell adhesion molecules” (Fig. 3b Additional 
file  1: Table  S1), whereas the differentially expressed 
genes in PBMC mRNAs were only enriched for two bio-
logical processes with low gene counts in each pathway 
(Additional file  1: Fig. S2d, Additional file  1: Table  S2). 
Therefore, platelet RNA profiles might provide a plat-
form for screening novel biomarkers of occult tumor. 
Furthermore, platelets were the optimum biosource for 
screening new biomarkers for early cancer detection 
since PBMC RNA profiles failed to yield enough eDEGs 
or significantly enriched pathways. To better understand 
the interplay among the identified eDEGs in platelets, we 
obtained the protein–protein interaction (PPI) network 
using the online STRING tool [31]. The complicated net-
work was made up of 25 modules, including 351 nodes 
and 1,148 edges and the top three significant modules 
were selected for further analysis (Fig.  3c–e). The first 
module contained 26 nodes and 270 edges, including toll-
like receptor 9 (Tlr9), intercellular adhesion molecule 1 
(Icam1), chemokine (C–C motif ) receptor 7 (Ccr7), inter-
feron gamma (Ifng), etc. (Fig. 3c). In the second and third 
module, there were only 10 nodes found and the degree 
values of genes (edges) were much lower than those in 
the first module (Fig. 3d, e). Combining literature search 
with our bioinformatics analyses, we finally selected 36 
genes from our platelet data for subsequent experimental 
validation (Fig. 3f ).

We established a validation cohort using our “early-
early” melanoma model to test the diagnostic efficacy and 
predictive value of the aforementioned 36 biomarkers. 

Fig. 3 Bioinformatics analyses of differentially expressed genes from suboptimal inoculation group. a Schematics of screening strategy for 
differentially expressed genes for screening early cancer biomarkers (eDEGs). Eligible genes differentially expressed between S (suboptimal 
inoculation group, mice inoculated with 2 ×  103 cells) and C group (negative control group, mice injected with HBSS), and also between S and O 
group (optimal inoculation group, mice inoculated with 1 ×  105 cells), shown in red columns (eligible eDEGs criteria see details in “Methods”). b Top 
GO terms of pathway enrichment analysis of eligible eDEGs with reference from KEGG pathways. Adjusted P value < 0.05, Benjamini and Hochberg 
method. c–e Top 3 PPI networks modules of eligible eDEGs. Color of a node in the PPI network:  log2 (Fold change, FC) value of normalized read 
counts of genes from S group compared with C group; Size of a node: number of interacting proteins with the designated protein (c–e). f Panel of 
36 genes screened from mRNA sequencing data besides 5 reference genes

(See figure on next page.)
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Fig. 3 (See legend on previous page.)



Page 9 of 15Yin et al. Journal of Translational Medicine           (2022) 20:71  

Mice inoculated in our previous experiments were 
divided into 3 groups according to their tumor develop-
ment status on the day of blood collection (day 14 post-
inoculation) (Fig.  4a). Mice with occult tumors on day 
14 post-inoculation, which were validated by subsequent 

tumor progression at least 5 days after blood collection, 
were categorized as early-early tumor group (E group) 
(Additional file  1: Fig. S3, Additional file  1: Table  S3, 
details in “Methods”). Mice with macroscopic tumors 
were classified as melanoma group (M group) and mice 

Fig. 4 Validation of the expression levels of selected 36 genes via qPCR in a mouse cohort. a The construction workflow of a murine validation 
cohort, as starting from B16F10 cell inoculation, nonterminal blood collection, to platelet isolation, and observation of tumor developments. C 
group: negative control group, mice injected with HBSS (Hank’s Balanced Salt Solution); E group: early-early group, mice with occult tumors 14 days 
post-injection (details in “Methods”); M group, mice with macroscopic tumors 14 days post-injection (a–f). b Tumor volumes of three groups of 
mice 14 days after inoculation. ***P < 0.001, Kruskal–Wallis non-parametric test, Error bars representing SD values. c Tumor growth kinetics of three 
groups from the mouse cohort. d Proportion of tumor-free and tumor-bearing mice in three groups of the mouse cohort. ****P <  10–10, log-rank 
Mantel-Cox test. e, f Heatmap of hierarchical clustering of expression levels of 36 selected genes from platelet mRNA sequencing data (normalized 
read counts) (e) or from quantitative real-time PCR results  (CtRef ―  CtGene) (f) in C group (green), E group (beige) and M group (orange). qPCR 
Data pooled from n = 11 biologically independent experiments with n = 51 (C group, black), n = 44 (E group, blue), and n = 50 (M group, red) mice 
(b-d, f)
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injected with HBSS were in negative control group (C 
group) (Fig.  4a). Tumor volumes measured on blood 
collection day showed that E group mice had no visible 
tumor or only small tumors (volume < 1  mm3) that did 
not progress for more than 2 weeks post-inoculation, ver-
ified by multi-phase regression analysis via Joinpoint pro-
gram (Fig. 4b, Additional file 1: Fig. S3, Additional file 1: 
Table S3) [36]. Tumor growth kinetics demonstrated that 
E group mice eventually developed macroscopic melano-
mas afterwards, much later than M group (Fig. 4c, d).

Quantitative real-time PCR (qPCR) experiments 
were performed to validate the selected 36 genes from 
eDEGs in our mouse validation cohort (Additional 
file 1: Table S4). The normalized expression levels of the 
36 genes were mostly in accordance with our previous 
sequencing data, except chloride channel accessory 3A1 
(Clca3a1), coagulation factor XIII, A1 subunit (F13a1), 
Ifng, perforin 1 (pore forming protein) (Prf1) and S100 
calcium binding protein A9 (S100a9), which yielded non-
significant results (Additional file  1: Fig. S4, Additional 
file  1: Table  S5). Hierarchical clustering of ΔCt values 
could discriminate E group from C group and M group, 
which was consistent with our sequencing data (Fig. 4e, 
f ). Although most selected genes could be validated in 
qPCR experiments, the quantities of several platelet RNA 
samples were too low for 36-gene-panel qPCR experi-
ments. Therefore, 10 samples were excluded for subse-
quent analysis. Moreover, some markers such as Clca3a1, 
Ifng or Prf1, yielded invalid Ct value in over 20% of sam-
ples from each group, probably due to low abundance in 
platelets (Additional file 1: Table S5). Therefore, 7 genes 
including Clca3a1, F13a1, granzyme B (Gzmb), Icam1, 
Ifng, killer cell lectin-like receptor subfamily G, member 
1 (Klrg1), and Prf1, were not used for subsequent regres-
sion analysis of E and C group. However, Gzmb was 
included in regression analysis of E and M group since it 
yielded valid Ct results in more than 90% of samples in 
each group (Additional file 1: Table S5). Ultimately there 
were 29 genes and 30 genes included as independent var-
iables in subsequent regression analyses of E vs. C group 
and E vs. M group.

LASSO binomial logistic regression was applied to gen-
erate the prediction model with a multi-gene expression 
signature as the best predictor for occult tumor progres-
sion in mice. Cross-validation was carried out in 10 folds 
to prevent overfitting (internal training sets and internal 
validation sets constructed randomly) (Additional file 1: 
Fig. S5a, b). We also compared LASSO with ridge and 
elastic net regression, which yielded similar gene sig-
natures with LASSO (Additional file  1: Fig. S6, Tables 
S6–S8). Finally the optimal gene signature consisting of 
CD19 antigen (Cd19), cyclin-dependent kinase inhibitor 
1A (P21) (Cdkn1a), S100a9, transporter 1, ATP-binding 

cassette, sub-family B (MDR/TAP) (Tap1), tumor necro-
sis factor receptor superfamily, member 1b (Tnfrsf1b) for 
E vs. C group, and Ccr7, CD4 antigen (Cd4), lysine (K)-
specific methyltransferase 2D (Kmt2d), lymphocyte anti-
gen 6 complex, locus E (Ly6e) for E vs. M group, as well 
as the corresponding coefficients were identified by the 
regularization process of LASSO regression (Additional 
file  1: Fig. S5c). Predictive scores for tumor progression 
were calculated from qPCR data using the training set of 
63 mice for E vs. C group and 60 mice for E vs. M group. 
The scores were then tested in the validation set of 27 and 
25 mice for E vs. C and for E vs. M group respectively. 
The biomarker score formula for E vs. C group could 
discriminate E group from C group with an area under 
curve (AUC) of 0.935 (training data) and 0.912 (testing 
data) (Fig. 5a). Moreover, the score formula for E vs. M 
group could also distinguish E group from M group with 
an AUC of 0.920 (training data) and 0.936 (testing data) 
(Fig. 5b).

Discussion
Although platelets have been suggested as a valuable 
platform for cancer diagnostics [20, 45, 46], studies have 
yet to address their potential as a cancer screening plat-
form. We used mouse melanoma cell line B6F10 to 
inoculate immune-competent wild-type C57BL/6 mice, 
for unlike studies with immune-compromised mice, 
mice with intact immune system could better simulate 
the interaction between cancer and the immune sys-
tem such as “cancer immunoediting” in tumor immune 
microenvironment. By using a mouse model that is sim-
ple, affordable and efficient, we identified differentially 
expressed RNAs in platelet signatures of mice injected 

Fig. 5 ROC curves of the diagnostic performances of gene 
predictors for occult tumor progression in mice. ROC curves for the 
diagnostic performances of the prediction score formulas generated 
from LASSO regression in the mouse cohort. ROC curves for the 
discrimination of early-early tumor (occult tumor, E group) from 
negative control group (C group) (a, E vs. C) or from macroscopic 
melanoma group (M group) (b, E vs. M). Probability statistics 
calculated according to the prediction score formulas generated from 
LASSO regression analyses: Probability =  eScore / (1 +  eScore). 95% CI of 
AUC: training data 0.872–0.999, testing data 0.799–1.000 (a); training 
data 0.852–0.988, testing data 0.837–1.000 (b)
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with a suboptimal number of tumor cells, compared with 
mice with large melanomas and negative controls. These 
genes presented strong positive correlations with RNAs 
implicated in immune response and regulation. This pos-
sibly reflects the interactions between tumor cells and 
the immune system in the early stage of tumorigenesis. 
Moreover, the lack of enriched biological pathways from 
PBMC samples suggests platelets are the optimum bio-
source for early detection of cancer.

Finally, our study selects the optimal gene-expression-
signature for the prediction of cancer risk via quantita-
tive real-time PCR via LASSO regression. CD19 is an 
essential receptor for B cell antigen receptor (BCR) sig-
nal transduction. Co-ligation of CD19 could enhance 
mitogen-activated protein kinase activity and cell pro-
liferation, and could also negatively regulate BCR sign-
aling. Anti-CD19 chimeric antigen receptor T cells are 
currently used in transformational therapy for aggressive 
B-cell lymphomas [47, 48]. CDKN1A (P21) is a member 
of cyclin-dependent kinase inhibitors and it has been 
regarded as a tumor suppressor by regulating the cell 
cycle and maintaining genomic stability. The downregu-
lation of CDKN1A is linked to poor prognosis in mul-
tiple cancers [49]. However, its overexpression is also 
found in a variety of human cancers [49]. Moreover, the 
upregulation of CDKN1A and its frequently cytoplas-
mic relocation correlate positively with poor prognosis 
in gastric cancer. The role of CDKN1A on tumorigenesis 
depends on the cellular context, its subcellular localiza-
tion and posttranslational modifications. The application 
of CDKN1A as a prognostic marker and a therapeutic 
target in cancer still require further investigation [49]. 
S100A9 (calgranulin B, Calprotectin) is a Ca(2 +) bind-
ing protein involved in inflammatory processes. S100A9 
was elevated in inflammation and various human can-
cers[50]. Recent studies have shown the presence of 
S100A9 and inflammatory factors in the tumor micro-
environment. The function of S100A9 depends on its 
concentration and location. S100A9 at high extracellular 
concentrations could induce the apoptosis pathway in 
cancer cells, while at lower levels S100A9 seem to pro-
mote proliferation of tumor cells [50]. However, at high 
intracellular concentrations, S100A9 induces a reduction 
in cancer cell invasion capacity by regulating the epithe-
lial–mesenchymal transition–the mesenchymal–epithe-
lial transition (EMT–MET) signaling cascades [50]. The 
molecular mechanism of pro- and anti-tumor properties 
of S100A9 is still unknown. TAP1 is associated with anti-
gen processing of major histocompatibility complex class 
I peptides for recognition by tumor-specific cytotoxic T 
lymphocytes. TAP1 overexpression might be an indica-
tor of aggressive breast cancer and was also significantly 
associated with poor prognosis in colorectal cancer 

[51–53]. Moreover, decreased TAP1 protein expression 
was significantly associated with low infiltration of lym-
phocytes and macrophages [51, 52]. Bioinformatic study 
with large datasets demonstrated a correlation between 
the TAP1 gene and tumor progression and a significant 
negative correlation for TAP1 gene expression and the 
survival rate in different cancer types [53]. TNFRSF1B 
belongs to TNF receptor (TNFR) superfamilies and plays 
an important role in protective immunity, inflammatory 
and tumor immunology. TNFRSF1B can induce down-
stream signaling pathways such as NF-κB and PI3K/Akt 
activation when interacted with its ligand TNFα [54]. 
TNFα-mediated co-stimulation supports TCR/CD28-
mediated T cell activation and survival [54]. Further-
more, ligation of TNFRSF1B inhibits regulatory T cell 
differentiation by suppressing Smad3-dependent Foxp3 
transcription [54]. CCR7 when ligated with its ligands, 
could induce the homing of T cells to a lymph node. 
Therefore, the increased expression of CCR7 has an anti-
cancer effect via cytotoxic TIL in tumors [55]. However, 
CCR7 could also enhance proliferation and stemness of 
cancer cells. The mechanisms of the tumor-promoting 
effect of CCR7 include the induction of tumor angiogen-
esis by activating NF-κB and increasing VEGF expres-
sion, epithelial–mesenchymal transition of cancer cells 
and migration of cancer cells to metastasis sites [55]. 
Higher expression of CCR7 is also associated with worse 
prognosis in diffuse large B-cell lymphoma [55]. CD4 is a 
coreceptor with the T-cell receptor on the T lymphocyte 
and CD4( +) T cell help signals are relayed to CD8( +) T 
cells by specific dendritic cells to optimize cytotoxic T 
lymphocyte (CTL) response [56]. Deficient CD4( +) T 
cell help can reduce the response of CTLs and maximiz-
ing CD4( +) T cell help can improve outcomes in can-
cer immunotherapy [56]. KMT2D belongs to the lysine 
methyltransferase (KMT2) family of histone modifying 
proteins, which play essential roles in regulating devel-
opmental pathways. The KMT2A-D proteins are impor-
tant for RNA Polymerase II-dependent transcription 
and KMT2 mutations have been linked to multiple can-
cers [57]. Recent studies have also provided evidence for 
KMT2 protein participation in epigenetic gene regulation 
and in carcinogenesis [57]. LY6E belongs to the LY6 gene 
family, which represent novel biomarkers for poor cancer 
prognosis and play essential roles in cancer progression 
and immune escape [58]. LY6E expressions are increased 
in bladder cancer, gastric cancer, etc. [58]. The LY6E gene 
has also been associated with more aggressive stem like 
cells in hepatocellular carcinoma, pancreatic carcinoma, 
etc. [58]. Recent data suggest that increased expression 
of LY6E is associated with poor overall survival of renal 
papillary cell carcinoma and pancreatic ductal adenocar-
cinoma [58]. These genes in our final gene signature are 
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mostly protein coding genes involved in cancer immu-
nology. It is possible that platelet mRNA could be used in 
cancer risk prediction in other types of cancers.

Indeed there are previous longitudinal studies using 
pre-diagnostic serums to screen for novel biomarkers of 
early cancer detection. However, these studies utilized 
pre-diagnostic serum to detect tumor-specific antigens 
or auto-antibodies for cancer risk prediction with lim-
ited sensitivity [7–10]. Novel cancer markers such as 
circulating tumor cells (CTCs) and circulating tumor 
DNA (ctDNA) offer new genomic approaches to screen 
for cancer through liquid biopsies. However, recent stud-
ies indicate CTCs assay cannot differentiate between 
patients with early-stage malignancy and people with no 
cancer and it has limited specificity as a screening tool 
[3, 4]. On the other hand, ctDNA has promised to be a 
sensitive and specific test for cancer screening [11, 12]. 
Still, ctDNA testing has several limitations for a screen-
ing platform compared with platelet RNA testing. First, 
the quantity of ctDNA is very limited even in cancer 
patients, not to mention in patients with early-stage can-
cer, while blood platelets are quite abundant. So the vol-
ume of blood needed in platelet testing is about 0.1  ml 
while ctDNA testing requires at least 10 ml. Second, the 
isolation and conversion process may cause damages 
to ctDNA, while platelet isolation procedure is simple 
and sample is stable and easy for storage. Third, ctDNA 
extraction requires an expensive kit while platelet isola-
tion needs no expensive consumables. The subsequent 
sequencing analysis of ctDNA is also more expensive 
than platelet sequencing in our study. Furthermore, our 
study used LASSO regression to select the optimum 
gene-expression-signature for the prediction of cancer 
risk via quantitative real-time PCR. Hence our strategy 
with the prediction models including 4 or 5 biomark-
ers as variables is much more cost-effective than ctDNA 
testing for hundreds of hotspots. Fourth, ctDNA analy-
sis could only detect frequently mutated genes in com-
mon cancers. The evolutionary and heterogeneity nature 
of cancer demands a large amount of possible mutations 
to be screened to achieve a consistent biomarker. Platelet 
biomarkers, on the other hand, are genes correlated with 
immune response and regulation according to our find-
ings. Hence, platelet RNA testing may not be affected by 
cancer type or heterogeneity. Fifth, our platelet RNA pre-
diction model could discriminate early-stage cancer from 
both healthy control and macroscopic tumor group, while 
biomarkers or screening models from previous studies 
often cannot distinguish samples from different stages of 
cancer. Thus platelet RNA testing may easily determine 
the best window for possible intervention. Last but not 
the least, platelet RNA testing described in our proof-of-
concept study takes hours via qPCR while ctDNA testing 

takes days or weeks via next-generation sequencing and 
require skilled biology and bioinformatics technicians. 
Hence platelet testing is much less time-consuming and 
requires less training of technicians. This demonstrates 
the potential of platelets as a non-invasive screening plat-
form for the detection of occult cancer.

The sensitivity and specificity of our model could fur-
ther improve by including more samples or increasing 
RNA quantities to avoid invalid qPCR results from low-
abundant genes, or by employing machine learning of 
large sequencing data for validation. Furthermore, the 
eDEGs are mostly immune-related, not tumor-specific. 
Hence it is possible platelets-based liquid biopsy could 
enable simultaneous early detection of cancers from 
multiple organs of origin. Since it has been shown that 
platelet profiles are influenced by tumor type [20], it is 
feasible to add tumor type markers into the gene-panel to 
determine the origin of cancer. It would also be interest-
ing to investigate platelet profiles in immunoediting ani-
mal models to further understand the role of platelets in 
cancer-immune interactions.

Conclusions
Combined, our study provides evidence for potential 
clinical relevance of blood platelets as a platform for liq-
uid biopsy-based early detection of cancer.
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Additional file 1: Fig. S1. Platelet RNA profiles of mice inoculated with 
B16F10 cells are consistent with previous studies. a, Images of mice after 
terminal blood collection. Representative images of mice in O group 
(optimal inoculation group, mice inoculated with 1 × 105 B16F10 cells) 
(left) and S group (suboptimal inoculation group, mice inoculated with 
2 × 103 B16F10 cells) with HE-stained histological images of tissue from 
inoculation site (right). b, Platelet mRNA sequencing data of known 
platelet-abundant genes with a dashed line showing the average read 
count of our data. c, Pearson’s correlation (color bar) matrix of our mRNA 
sequencing data of platelets and PBMCs (columns and rows). S: platelet 
suboptimal inoculation group; O: platelet optimal inoculation group; C: 
platelet negative control group. PS: PBMC suboptimal inoculation group; 
PO: PBMC optimal inoculation group; PC: PBMC negative control group. d, 
Heatmap of previously reported differentially expressed genes between 
platelets and PBMCs from our sequencing data. Fig. S2. PBMC RNA pro-
files of mice inoculated with an optimal or suboptimal number of B16F10 
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cells. a, Correlation plots of mRNAs detected in PBMCs of suboptimal 
inoculation group (S group, mice inoculated with 2 × 103 B16F10 cells), 
negative control group (C group, mice injected with HBSS) and optimal 
inoculation group (O group, mice inoculated with 1 × 105 B16F10 cells) 
mice, including highlighted increased (red) and decreased (blue) PBMC 
mRNAs. NRC, normalized read counts (mean of group). r value calculated 
from Pearson’s correlation test. b, Venn diagram of differentially expressed 
genes from pairwise comparisons. c, Heatmap of hierarchical clustering 
of PBMC mRNA profiles of S group (beige), C group (green) and O group 
(orange). Data pooled from (a, b) n = 5 biologically independent experi-
ments with n = 24 (S group) or n = 25 (C group) and n = 20 (O group) 
mice or data representing all 5 independent experiments (c). d, Top GO 
terms of pathway enrichment analysis of eligible eDEGs (strategy same as 
Fig. 3a, details in “Methods”) in PBMCs with reference from KEGG pathways. 
Adjusted P value < 0.05, Benjamini and Hochberg method. Fig. S3. An 
example of the selected models from Joinpoint multi-phase regression 
analyses. Tumor growth data from one mouse in early-early tumor group 
(E group). Fig. S4. qPCR verifications of the expression levels of selected 
36 genes in the mouse cohort. Violin plots of normalized gene expression 
levels (2ΔCt(Ref-Gene)) of 36 selected genes in three groups of the mouse 
cohort. C: negative control; E: early-early tumor; M: macroscopic mela-
noma. *P < 0.05, **P < 0.01, ***P < 0.001, Kruskall-Wallis test. Data without 
significance tags representing non-significant for analyses between three 
groups (h, n, u, ad, ae) (detailed statistics including n values and P values 
see Table S5). Fig. S5. LASSO regression model construction and variable 
selection for predicting occult tumor progression in mouse cohort. a, b, 
Ten-fold cross-validation for the selection of the penalty term λ with the 
binomial deviance as measures of the predictive performance of the fitted 
models. The dependent variable groups: E vs. C (a) or E vs. M (b). c, Coef-
ficients derived from LASSO regression. E, early-early tumor (occult tumor 
that progressed into macroscopic tumor later); C, negative control group; 
M, macroscopic melanoma group. Numbers of samples included in LASSO 
regression: E, n = 40; C, n = 50; M, n = 45. Numbers of variables included 
in LASSO regression: E vs. C, n = 29; E vs. M, n = 30. The prediction score 
formulas for the discrimination of E group from C group (ScoreEC) or 
from M group (ScoreEM) established as follows: ScoreEC = 6.337 – 0.156 
× (CtCd19 – CtRef ) – 0.345 × (CtCdkn1a – CtRef ) + 0.187 × (CtS100a9 – 
CtRef ) – 1.582 × (CtTap1 – CtRef ) + 0.615 × (CtTnfrsf1b – CtRef ); ScoreEM 
= 4.664 – 0.149 × (CtCcr7 – CtRef ) – 0.900 × (CtCd4 – CtRef ) + 0.326 × 
(CtKmt2d – CtRef ) – 0.313 × (CtLy6e – CtRef ). Fig. S6. Ridge and elastic 
net regression model construction and variable selection for predicting 
occult tumor progression in mouse cohort. a, b, Ten-fold cross-validation 
for the selection of the penalty term λ with the binomial deviance as 
measures of the predictive performance of the fitted models for ridge 
regression (coefficients derived from LASSO regression see Table S6). 
The dependent variable groups: E vs. C (a) or E vs. M (b). ROC curves for 
the diagnostic performances of the prediction score formulas generated 
from ridge (c, d) and elastic net (f, g) regression in the mouse cohort. ROC 
curves for the discrimination of early-early tumor (occult tumor, E group) 
from negative control group (C group) (c, f, E vs. C) or from macroscopic 
melanoma group (M group) (d, g, E vs. M). The prediction score formulas 
for the discrimination of E group from C group (ScoreEC) or from M group 
(ScoreEM) established as follows: Score = Intercept + Σ Coefficient × 
(CtVariable – CtRef ). Probability statistics calculated according to the 
prediction score formulas generated from regression analyses: Probability 
= eScore / (1 + eScore). 95% CI of AUC: training data 0.879-0.997, testing 
data 0.806-1.000 (c); training data 0.891-1.000, testing data 0.822-1.000 
(d); training data 0.861-0.994, testing data 0.807-1.000 (f ); training data 
0.887-0.995, testing data 0.901-1.000 (g). e, Elastic net regression’s optimal 
alpha and lamda combination. E, early-early tumor (occult tumor that pro-
gressed into macroscopic tumor later); C, negative control group; M, mac-
roscopic melanoma group. Numbers of samples included in regression: E, 
n = 40; C, n = 50; M, n = 45. Numbers of variables included in regression: 
E vs. C, n = 29; E vs. M, n = 30. Table S1. Enriched KEGG pathways of dif-
ferentially expressed mRNAs in platelets of suboptimal inoculation group. 
Table S2. Enriched KEGG pathways of differentially expressed mRNAs in 
PBMCs of suboptimal inoculation group. Table S3. Joinpoint multi-phase 
regression statistics for all mice in early-early group of the mouse cohort. 

Table S4. Primers for qPCR experiments. Table S5. Statistic analyses of the 
normalized expression levels of selected 36 genes in the mouse cohort. 
Table S6. Coefficients derived from ridge regression. Table S7. Coef-
ficients derived from elastic net regression. Table S8. Root mean square 
error (RMSE) analyses of ridge, lasso and elastic net regression.

Additional file 2: Table S9. Differentially expressed mRNAs in platelets of 
suboptimal inoculation group compared with optimal inoculation group 
and control group.

Additional file 3: Table S10. Differentially expressed mRNAs in PBMCs of 
suboptimal inoculation group compared with optimal inoculation group 
and control group.
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