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Abstract 

Introduction: Pemetrexed combined with platinum complexes can be used as first-line treatment for advanced 
non-squamous non-small cell lung cancer (NSCLC), however, the efficacy and safety is varying from individuals. There 
is a need to better understand the genetic variations associated with platinum response.

Materials and Methods: We performed next-generation sequencing (NGS) based on BGI Oseq-ctDNA panel to ana-
lyze 98 longitudinal plasma samples from 32 lung adenocarcinoma patients during platinum-based chemotherapy, 
and a bioinformatic pipeline was developed to detect point mutations.

Results: We found that mutation burden was decreased after chemotherapy, which reflected chemotherapy sensitiv-
ity, especially the frequency of C>G and C>A substitutions. Moreover, neoplastic cells carrying a specific set of somatic 
mutations, such as EGFR(L858R), KRAS (p.G12C) were obviously correlated with platinum treatment. In addition, the 
MAPK pathway was found to have a pivotal role in NSCLC and platinum based response. Finally, we found that smok-
ers benefit less from platinum-based chemotherapy.

Conclusions: Collectively, this work described the dynamic changes of ctDNA mutation status during platinum-
based treatment, which may contribute to advanced lung adenocarcinoma patients stratification and precision 
treatment.
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Introduction
Lung cancer, of which the major subtype is non-small 
cell lung cancer (NSCLC), is one of the leading causes 
of cancer-related deaths worldwide [1]. The large scales 
of patients with NSCLC are diagnosed with metastatic 

disease, which is generally fatal and experiences a low 
5-year survival rate (≤ 5%) when diagnosed with stage 
IIIB or IV [2]. More than 80% of NSCLC cases are ade-
nocarcinoma subtype, whose incidence rate has stead-
ily increased over the past decades [3]. Platinum-based 
chemotherapy was recommended as first-line chemo-
therapy regimen for advanced NSCLC in National 
Comprehensive Cancer Network (NCCN) guideline, 
especially, those without epidermal growth factor 
receptor (EGFR) mutations or anaplastic lymphoma 
kinase (ALK) rearrangement and proto-oncogene 
tyrosine-protein kinase ROS (ROS1) translocations 
[4]. However, clinical outcomes is varying from indi-
viduals, and no widely applicable biomarkers have been 
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successfully applied to daily clinical practice. Due 
to the little information about biomarkers to evalu-
ate the chemotherapy response, it is clinically impor-
tant to find out novel predictive markers for treatment 
response and survival after platinum-based chemo-
therapy in patients with NSCLC. Currently, develop-
ment of next-generation sequencing (NGS) technology 
and genotyping has offered promising prospects on the 
molecular pathology of NSCLC.

The repeat tissue biopsy can potentially provide 
prognostic information on chemotherapy efficacy but 
is limited to longitudinal monitoring for its invasive 
manipulation [5]. Furthermore, it may fail to reflect 
the intra- and inter-tumor genetic heterogeneity [6, 7]. 
Compared with tissue biopsy, blood is easier to obtain 
and less expensive. Besides, it can deliver a more com-
prehensive genomic profiling because tumor either in 
first-site or metastases can shed genomic DNA infor-
mation to the bloodstream [8, 9]. Liquid biopsy via 
circulating tumor DNA (ctDNA) in blood provides an 
attractive alternative for long terms evaluation and pre-
diction for lung cancer patients and ctDNA level may 
provide a more comprehensive picture of the lung can-
cer, because markers spreading in the blood may con-
tain cancer-associated materials from many diseases 
site in the body organs.

An increased understanding about ctDNA as predic-
tor and biomarker for disease response and survival in 
NSCLC patients has come forth in recent years. Some 
studies showed the ctDNA concentration is associ-
ated with poor prognostic results [10, 11], while other 
studies assessed the predictive and prognostic value 
of cfDNA concentration or EGFR mutation in NSCLC 
patients treated with chemotherapy [12], but these 
studies are limited to obtain a few genes, not reflect-
ing the full spectrum of mutations emerging during the 
treatment. In addition, there is a lack of clinical infor-
mation on prediction of efficacy for advanced NSCLC 
patients after chemotherapy, especially through 
dynamic monitoring.

Here we assessed the genetic dynamics changes in 
ctDNA before and during chemotherapy treatment, a 
targeted sequencing panel Oseq-ctDNA based on the 
Illumina platform was used with a customized bioinfor-
matics pipeline to identify novel responsiveness asso-
ciated biomarkers and potential actionable targets in 
advanced lung adenocarcinoma.

Materials and methods
Study design and patients selection
We conducted a prospective study with 32 consecu-
tive patients recruited who was histologically confirmed 
advanced or metastatic lung adenocarcinoma between 

April 2015 and June 2016, they all received platinum 
based chemotherapy as the first-line treatment in Cancer 
Hospital, Chinese Academy of Medical Sciences. Base-
line blood samples were taken within a week before the 
first dose of chemotherapy, serial follow-up samples were 
obtained after each treatment cycle, the detailed clinico-
pathological information and blood draw time points for 
each patient were shown in Additional file  1: Table  S1 
and Additional file 2: Table S2. Clinical information was 
collected from electronic medical record system or tele-
phone follow-ups. Clinical staging was determined using 
chest computed tomography, brain magnetic resonance 
imaging, and 18F-fluorodeoxyglucose positron emission 
tomography based on the 7th lung cancer TNM classi-
fication and staging system. Response to treatment was 
examined by computed tomography every two cycles and 
evaluated according to the Response Evaluation Crite-
ria in Solid Tumors (RECIST) 1.1 as complete response 
(CR), partial response (PR), stable disease (SD), or pro-
gressive disease (PD) [13]. The study was approved by 
the Independent Review Board (IRB) of Cancer Hospital, 
Chinese Academy of Medical Sciences and BGI Genom-
ics. (CH-BMS-018, BGI-IRB18035).

cfDNA extraction and sequencing
The genomic DNAs were extracted form plasma samples 
and matched germline DNA from white blood cells using 
Tiangen genomic DNA extraction kit (DP318) according 
to the manufacturer’s standard protocol. 1  µg of DNA 
from each sample was used for library construction. At 
first, genomic DNA fragmentation was performed using 
an ultrasonoscope (Covaris E220; Covaris, Massachu-
setts, USA) to generate fragments with a peak of 250 bps 
with intensity H, time 5 min and cycle 6. After purifica-
tion with AMPure beads (Beckman Coulter, Brea, USA), 
the DNAs were treated with T4 DNA polymerase, T4 
polynucleotide kinase and the Klenow fragment of E. 
coli DNA polymerase for 30 min on 20  °C in a thermo-
cycler to generate blunt phosphorylated DNAs. A 4-cycle 
polymerase chain reaction (PCR) was performed with 
primers containing unique 8 bp-index sequence to mark 
samples and purify. The libraries which were the puri-
fied PCR products were quantified by Bioanalyzer 2100 
instrument (Agilent Technologies, Palo Alto, USA) and 
Qubit 2.0 (Inverogen, USA). DNA target enrichment was 
performed on a custom sequence capture-array (Roche, 
Bael, Switzerland). The pooled library with a combined 
mass about 5  μg was used in the target region to cap-
ture hybridization. After 72  h hybridization at 42  °C, 
the DNA fragments bound to the array were washed 
and eluted with 125  mM sodium hydroxide. The elu-
tion product was purified using QIAquick PCR Purifi-
cation Kit (Qiagen, Hilden, Germany) after following a 
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15-cycle ligation-mediated PCR to enrich the captured 
DNAs. The size and quantity of the captured library were 
assessed by Bioanalyzer 2100 instrument and Qubit (Inv-
itrogen) and the enrichment of target region was assayed 
by QRT-PCR. Genomic DNA sequencing was performed 
on a HiSeq 2500 sequencing system (Illumina, San Diego, 
CA) with 2× 101-bp, paired-end reads were 100-bp and 
single index read 8-bp using SBS Kit v4 chemistry on a 
HiSeq 2500 loaded onto an Illumina cBot instrument at 
50 pmol/L for cluster generation according to the manu-
facturer’s instructions.

Whole‑exome sequencing
Whole-exome sequencing was performed on genomic 
DNAs from two tumors and matched blood samples. 
The SureSelectXT Human All Exon V5 capture library 
(Agilent) for 50 Mb of exonic regions was used to cap-
ture the exonic DNA. According to the manufacturer’s 
instructions, we constructed the sequence library with 
the SureSelectXT Target Enrichment System for Illumina 
Paired-End Sequencing Library kit (Agilent). Then DNA 
sequencing of 100-bp paired-end reads were performed 
using the Illumina HiSeq4000 sequencer.

Sequencing data processing
Sequencing data was filtered with SOAPnuke (v1.5.0; 
https ://githu b.com/BGI-flexl ab/SOAPn uke) to remove 
sequencing adapters and low quality reads. We used 
BWA (v0.5.9; http://bio-bwa.sourc eforg e.net/) with 
default parameters to align high-quality reads to the 
NCBI human reference genome (hg19). Picard (v1.54; 
http://broad insti tute.githu b.io/picar d/) and Genome 
Analysis Toolkit (v1.0.6076, GATK IndelRealigner; https 
://softw are.broad insti tute.org/gatk/) [14] were used to 
mark duplicates reads and improve alignment accuracy, 
respectively.

The potential somatic single-nucleotide variants 
(SNVs) were called by two software based on paired-
alignment files (tumor and normal bam).One was Mut-
Tect (http://archi ve.broad insti tute.org/cance r/cga/mutec 
t) using default parameters(–initial_tumor_lod < 4.0 > , 
Initial LOD threshold for calling tumor variant–tumor_
lod < 6.3 > ,LOD threshold for calling tumor variant–
normal_lod < 2.2 > ,LOD threshold for calling normal 
non-germline–dbsnp_normal_lod < 5.5 > ,LOD thresh-
old for calling normal non-variant at dbsnp sites –pir_
median_threshold < 10.0 > ,threshold for clustered read 
position artifact median –pir_mad _threshold < 3.0 > , 
threshold for clustered read position artifact MAD–max_
alt_alleles_in_normal_count < 1>,threshold for maximum 
alternate allele counts in normal–max_alt_alleles_in_
normal_qscore_sum < 20 > ,threshold for maximum alter-
nate allele quality score sum in normal–max_alt_allele 

_in_normal _fraction < 0.03 > ,threshold for maximum 
alternate allele fraction in normal–power_constant_
qscore < 30 > , Phred scale quality score constant to use in 
power calculations), and the other was VarScan (https ://
githu b.com/dkobo ldt/varsc an) with the following param-
eters: –min-coverage-normal 10 –min-coverage-tumor 
14 –min-var-freq 0.001 –somatic-p value 0.05.

Bioinformatics pipeline
We first got the original bam (Bam File A). Considering 
the fact that the length distribution of cfDNA fragments 
have a dominant peak at ~ 167 bp, whereas the distribu-
tion peak of ctDNA fragments was ~ 133  bp. And there 
is positive  correlation  between the proportion of short 
DNA (below 150 bp) and the amount of tumor DNA in 
the plasma of cancer cases [15]. We reconstructed the 
bam file by selecting the reads whose insert size was 
smaller than 150 bp, designated as remoulded bam (Bam 
File B). Following the method calling SNVs showed in 
Materials and methods section ‘Sequencing data process-
ing’ section, we detected potential somatic SNVs based 
on paired alignment files (tumor and normal bam).

Here we developed a software to filter the initial point 
mutations by following conditions: (1) In tumor, the 
mutant site should have ≥ 4 mutant reads with ≥ 1 reads 
on each strand. In normal, the mutant site can only 
have ≤ 2 mutant reads with the normal VAF < 0.01 and 
isn’t within the dbSNP131 database. They are required 
with at least 40-fold coverage in normal and tumor. 
The mutations with supported reads ≥ 1 in normal and 
present in ExAC with AF ≥ 0.001 or with supported 
reads ≥ 2 in normal but not present in COSMIC database 
were removed. (2)The number of mutant reads covered 
this site must be an outlier in a given window around it, 
and less than 3 smaller insert and deletion in site <=10 bp 
from a predicted SNV, but 0 string mismatch base pairs in 
reads located on this mutant site. In addition, mismatch-
ing bases can`t enrich in this region which can determine 
by our software. Here we select 11  bp region around 
a predicted SNV as a window to analysis. /93) A power 
which represents the probability of a mutation detected 
in the plasma was calculated via our software, and those 
mutations with detected power more than 80 were kept. 
/94) A posterior probability of a predicted SNV based on 
TCGA database was also evaluated by our software, and 
those mutations with detected posterior probability more 
than 0.8 were kept. /95) Choose the PASS type mutations 
via the published perl script (https ://githu b.com/ucscC 
ancer /fpfil ter-tool) with the default parameter.

Finally, all the outcomes were checked one by one 
whether it is caused by nearby misaligned small inser-
tion and deletion events or sequence similarity in the 

https://github.com/BGI-flexlab/SOAPnuke
http://bio-bwa.sourceforge.net/
http://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/
https://software.broadinstitute.org/gatk/
http://archive.broadinstitute.org/cancer/cga/mutect
http://archive.broadinstitute.org/cancer/cga/mutect
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https://github.com/dkoboldt/varscan
https://github.com/ucscCancer/fpfilter-tool
https://github.com/ucscCancer/fpfilter-tool
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genome, leading to misplacement of reads in the origi-
nal bam. Then we can get all the mutations with more 
confidence. All those mutations were annotated by 
ANNOVAR(http://annov ar.openb ioinf ormat ics.org/en/
lates t/) [16].

Mutational processing in plasma
Mutation spectrum analysis was based on the six possible 
base changes pre- or post- chemotherapy. Then we dis-
played the proportion of 96 possible mutation types with 
the R package lwlegopt (https ://githu b.com/BGI-LuoWe 
n/lwleg opt). To determine the dynamic of mutational 
processes in plasma, all point mutations pre- chemo-
therapy were analyzed using MutationalPatterns R pack-
age [17] based on the 30 of COSMIC signatures (https ://
cance r.sange r.ac.uk/cosmi c/signa tures ).

Statistical analyses
All statistical test were performed in R. In this study, 
Student’s  t-test was used for determining significance of 
point mutations. Variant allele frequency of mutations 
was usually tested with a non-parametric Mann–Whit-
ney U test, as well as gene expression between normal 
and tumor samples, but not for the variant allele fre-
quency of mutations between smoker and nonsmoker 
which was tested with one-way ANOVA test. In addition, 
Fisher’s exact test and Cochran-Mantel–Haenszel Chi 
Squared test were also used in non-silent SNVs, clinical 
pathological features and Additional file 6: Table S4. And 
finally, the log-rank test was used to perform overall sur-
vival (OS) and progression-free survival (PFS) analysis. 
For all statistical test used, we assumed that there is inde-
pendence between data. Box plots showed median values 
and middle quartile.

Results
Data cohort and analytic approaches
In this study, we collected 98 plasma samples from 32 
patients during chemotherapy (Fig. 1a). All patients were 
histologically confirmed advanced (28.1% at stage III and 
71.9% at stage IV) lung adenocarcinoma in China (Addi-
tional file 1: Table S1 and Additional file 2: Table S2). Of 
these, 65.6% were men and half of them had malignant 
pleural effusion. Patients were diagnosed with a median 
age 60.5  years (range, 43-75  years), and 59.4% of them 
were smokers. Platinum-based chemotherapy was the 
first-line treatment for them, 93.7% were treated with 
pemetrexed combined platinum (53.1% cisplatin and 
40.6% carboplatin), and 12 patients received TKI treat-
ment after chemotherapy failure.

To analyze 28 pre-chemotherapy and 68 post-chemo-
therapy plasma DNAs, we performed a next-generation 

sequencing (NGS) based on BGI Oseq-ctDNA, a panel 
that involves 508 cancer-related genes (Fig.  1b; Addi-
tional file  3: Table  S3).The average coverage of target 
regions were approximately 274 × for normal control, but 
991x for tumors (Additional file 4: Figure S1A). We fol-
lowed the pipeline to detect somatic mutations (Fig. 1c). 
Through this pipeline, many candidate point mutations 
were observed with a mean variant allele frequency 
(VAF) more than 1% which previous report was counted 
[18] (Additional file  4: Figure S1B). The genetic altera-
tion landscape of the target coding region across those 27 
samples pre- chemotherapy were very similar to TCGA-
exome cohort (Fig. 1d).

To further evaluate those point mutations, we per-
formed a screening for two tissue samples pre- chemo-
therapy which were randomly selected from the 32 
patients. Whole exome sequencing was used to analyze 
these two tissues with an average coverage of 200x. 27 out 
of 101 (26.7%) alterations were identified in both plasma 
samples and tissue samples (Additional file 4: Figure S1C, 
Additional file 6: Table S4).

Mutation burden decreases after platinum treatment
We identified a total of 1559 point mutations across 98 
plasma samples, including 637 non-silents, 262 silents 
and 660 non-coding mutations. Among the 98 tumor 
samples, 98% (96/98) carried one or more point muta-
tions during chemotherapy (range, 1–75 mutations), 
showing a diversity of mutation detection rate of patients 
during chemotherapy (Additional file  5: Figure S2A). 
Simultaneously, we found that whole mutation bur-
den and non-silent mutation burden both gradually 
decreased following platinum-based chemotherapy,with 
p value 0.034 and 0.013, respectively (Fig. 2a). Moreover, 
patients with better response to platinum carried less 
non-silent mutations after chemotherapy compared to 
those insensitive patients (Fig. 2b). In addition, non-silent 
SNVs at baseline was higher in patients with response 
(PR or SDa) compared to non- responders (SD or PD), 
objective response rate was also greater in patients with 
higher non-silent SNVs (> median, 7 mutations) com-
pared with low non-silent SNVs (≤ median), although 
not reaching statistical significance likely owing to small 
numbers (Additional file 5: Figure S2B).

When we explore the different spectra following chem-
otherapy, we found that C>G mutations were signifi-
cantly decreased during platinum treatment, no matter 
total SNVs (p = 0.039; Fig. 2c) or VAF (p < 0.01; Fig. 2c), 
especially in patients with objective response (PR or SDa) 
(p = 0.029; Additional file  5: Figure S2C), suggesting a 
significant correction between C>G mutations and plat-
inum-based response. Furthermore, C>A transversion, 

http://annovar.openbioinformatics.org/en/latest/
http://annovar.openbioinformatics.org/en/latest/
https://github.com/BGI-LuoWen/lwlegopt
https://github.com/BGI-LuoWen/lwlegopt
https://cancer.sanger.ac.uk/cosmic/signatures
https://cancer.sanger.ac.uk/cosmic/signatures
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which was reported to be correlated with smoking sta-
tus [19–21], the mutation levels were generally low post 
chemotherapy (p = 0.003; Additional file  5: Figure S2D), 
especially in non-smokers(Additional file 5: Figure S2E).

Mutational signatures in LUAD during chemotherapy
We analyzed point mutations of 27 plasma pre-treatment 
samples, the result indicated that almost 63% (17/27) 
patients characterized by smoking associated signatures 
(COSMIC Signatures 4, 16 and 29) [22], of which 64.7% 
(11/17) were smokers (Fig.  3a), showing that smok-
ing associated signatures were ubiquitous signatures in 
LUAD [23]. However, there is no relationship between 
smoking associated signatures and platinum response 
(Additional file 6: Table S4). Interestingly, we noticed that 
2 out of 27 (7.4%) patients displayed a prominent contri-
bution of platinum associated signature (COSMIC Sig-
natures 3) with platinum sensitivity. These findings were 
further validated in three independent cohorts including 
TCGA with more than 6.1% cases were characterized by 

platinum associated signatures (Fig. 3b). The results indi-
cated that mutation spectra and signatures could be fac-
tors influencing platinum response [24].

Gene silencing and benefit during chemotherapy
In total, 392 out of 508 (77.2%) cancer-related genes were 
identified from 98 blood samples (Fig. 4a), including sev-
eral previously reporter genes: TP53 (pre vs post: 25.9% 
vs 5.6%),KRAS (pre vs post: 18.5% vs 5.6%), EGFR (pre vs 
post: 11.1% vs 5.6%), STK11 (pre vs post: 3.7% vs 4.2%), 
GNAS (pre vs post: 3.7% vs 9.9%). Of these common 
reporter genes, some non-silent protein-coding muta-
tions were observed both pre- and post- chemotherapy 
(Fig.  4b), showing the important role of these genes in 
LUAD. We found that VAFs of some driver mutations 
decreased following platinum treatment, and some hot-
spot mutations, such as EGFR(L858R), KRAS (p.G12C), 
were still present post chemotherapy(Fig.  4c). Besides 
reporter genes, chromatin modifying gene SETD2 was 
also commonly mutated (pre vs post: 11.1% vs 7%), as 
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well as NSD1 [25] (pre vs post: 11.1% vs 4.2%), LRRK2 
(pre vs post: 11.1% vs 7%) and ALK (pre vs post: 7.4% 
vs 5.6%). Mutations in genes NOTCH1, NCOA2, MYC, 
ATRX and RPTOR were significantly increased after plat-
inum chemotherapy in the plasma samples (Additional 
file 7: Figure S3A), whereas few genes were almost absent 
after treatment, such as HDAC4, USP9X and POLQ 
(Additional file  7: Figure S3B), suggesting that neoplas-
tic cells carrying a specific set of somatic mutations were 
sensitive to platinum treatment. Nonetheless, persistence 
of genetic mutations like TP53 (p.V41L), MYC (p.Q48H), 
ALK (p.V467L), ALOX12B (p.I672  M) and CASP8 
(p.S301Y) were still observed during platinum treatment 
(Additional file  7: Figure S3C), showing a link between 
insensitivity to platinum-based chemotherapy with these 
base substitutions. Notably, a novel cancer gene ROBO2 
(Roundabout Guidance Receptor 2), which plays impor-
tant roles in apoptosis, motility, angiogenesis and inva-
sion of cancer cells [26, 27], were also mutated in a set of 

patients (pre vs post: 7.4% vs 1.4%) (Additional file 7: Fig-
ure S3D). Moreover, mRNA expression of ROBO2 were 
significantly decreased in TCGA cohort [28] (p < 0.001). 
Three independent cohorts showed the variants of 
ROBO2 (Additional file 8: Table S5). These findings sug-
gest that ROBO2 may play an important role in LUAD 
tumorigenesis.

Key pathway involved in chemotherapy 
and therapeutically targetable driver genes
To further understand the genetic dynamics process, 
we examined the distribution of mutations across Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. 
84 point mutations in 30 genes, including EGF/FGF fam-
ily members and NTRK receptor families, were found 
in the MAPK pathway (Fig.  5a). Notably, 52% (51/98) 
samples carried one or more mutations activated the 
MAPK pathway, implying this pathway would have a 
pivotal role in LUAD (Fig. 5a). Moreover, we found that 
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many variants in this pathway presented with lower 
allele frequencies in plasma samples post chemotherapy 
(p < 0.001; Fig.  5b), suggesting that those somatic muta-
tions in genes within the MAPK pathway would under 
the influence of platinum-based chemotherapy. We also 
discovered seven other pathways with VAFs of their 
mutations significantly changed during platinum treat-
ment, including Notch signaling, TCR/BCR signaling, 
cell cycle, VEGF signaling, Toll-like receptor signaling 
and NK cell mediated cytotoxicity (Fig. 5b). In addition, 
mTOR pathway components were mutated in 10 genes 
and in more than 16.3% of tumors. Of these mutations, 
VAFs didn’t have a prominent change (p = 0.25), showing 
activation of mTOR pathway through somatic mutations 
contribute less to platinum-combination chemotherapy 
in advanced LUAD.

91 genomic variations within 47 genes were detected 
in 56 plasma tumors from 26 patients based on the TAR-
GET database [29] (Additional file  9: Figure S4A). We 
found that 50% of patients carried potential therapeutic 
targets both pre and post-chemotherapy, and there exists 
some potential therapeutic targets presented in 28.1% 
(9/32) of patients only after chemotherapy. Although 
some drug mutations were eliminated, there still has a set 
of genes for which somatic alterations have therapeutic 
or prognostic implications, such as ALK, EGFR, CDK12 
and so on (Additional file 9: Figure S4B). Notably, muta-
tions participating in activating the ERK, PI3K, MTOR 
pathway were frequent, with 35 alterations in 28 cases 

occurring in 13 of 17 evaluated genes. Of which, EGFR 
was the most frequently mutated gene in LUAD (7.14% 
of tumors), following by ALK (6.12% of tumors) (Addi-
tional file  9: Figure S4C). Based on the CIViC database 
[30], we identified an original EGFR-activating mutation 
(S768I) in one patient, which can be targeted by Erlotinib 
and Gefitinib. Simultaneously, KRAS G12C mutation 
was detected in four patients shown to be actionable by 
ARS-853, EGFR Inhibitor, Docetaxel, and Selumetinib 
(AZD6244). Taken together, these data suggest that 
ctDNA analysis for LUAD patients can yield significant 
clinical relevance and detect potentially targetable genes 
in patients, which can provide guidance for individual-
ized therapy during chemotherapy.

Relationship of clinicopathological features 
with chemotherapeutic response and prognosis
Next, we examined the differences of clinical features 
between chemotherapy sensitive versus insensitive 
populations, the result demonstrated that more smok-
ers tend to exist in insensitive group (p = 0.074; Fig. 6a). 
Interestingly, this association between smoking status 
and treatment efficacy was not found in patients treated 
with pemetrexed and carboplatin(p = 0.594), but existed 
in patients who treated with pemetrexed combined with 
cisplatin(p < 0.05) Above results suggest that smoking 
may affect the efficacy of platinum chemotherapy, espe-
cially pemetrexed combined with cisplatin treatment. 
Moreover, the survival analysis revealed that patients 
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treated with pemetrexed and carboplatin got longer sur-
vival than pemetrexed combined with cisplatin, though 
with no statistical significance. (Figure 6b).After first line 
chemotherapy failure, 37.5%(12/32) patients received 
TKI treatment, the multivariable analysis showed TKI 
therapy was significantly associated with better out-
come, which was significant independent of other factors 
(Additional file 10: Figure S5).

Discussion
This study was designed to explore the dynamic genetic 
alterations during first line platinum-based doublet 
chemotherapy in advanced NSCLC patients, and inves-
tigate the potential genomic variations associated with 
clinical response based on 508 cancer-related gene 
assessments. We explored the great potential of ctDNA 
in cancer prognostic prediction and depicted the genetic 

spectrum under chemotherapy. Mutation burden and 
some key mutations were found decreased following 
chemotherapy. Several critical pathways and potential 
drug targets were identified, which might provide guid-
ance of individualized lung cancer therapy.

In fact, ctDNA is convenient to obtain and less risk 
to patients compared with tissue biopsy. Theoretically, 
ctDNA may carry more information on the entire tumor 
regardless of tumor heterogeneity caused by sampling of 
a single site [31]. CtDNA has been demonstrated to be a 
potential material for tumor early detection and efficacy 
monitoring, consequently, FDA has approved several 
companion diagnostic devices based on blood testing. 
This study provides that ctDNA assessments could be 
used to reliably monitor and correlated with clinical out-
come to explore a potential technique of cancer treat-
ment. Since analytical validity is critical to the assessment 
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of clinical significance [32], we validated the potential 
mutations detected in both blood and matched tissues 
of two patient before treatment. We found that the con-
cordance rates of mutation between blood and tissue 
were 32.3% and 20%, respectively, which was within a 
range of 15%-94% in previous report [33].

We noticed that mutation burden was decreased fol-
lowing cycles of chemotherapy, and patients harbor-
ing more non-silent mutations showed better response 
Tumor mutation burden (TMB) was known as related 
to the efficacy of immune checkpoint inhibitors [34], 
however, one recent report suggested that TMB may be 
a predictive marker of chemotherapy response [35]. Our 
results gave a clue that chemotherapy has an impact on 
mutation burden, and mutation burden could be a poten-
tial marker of clinical response, which increased our 
understanding of mechanism of chemotherapy and the 
association between genomic alteration with chemother-
apy. Among mutations altered following chemotherapy, 
C>G substitutions were significantly decreased, and C>A 
point-mutation was also associated with chemotherapy 
efficacy (Additional file 11: Table S6).

Furthermore, some common driver genes, includ-
ing TP53 (p.K159X) and EGFR (p.E709 K and p.G719A) 
were no longer detected after therapy, indicating these 
mutations may contribute to sensitivity to chemother-
apy, although the biological behavior of these muta-
tions was not fully understood, our study demonstrates 
their potential effects on chemotherapy and improved 
our knowledge to lung adenocarcinoma mutation land-
scape. TP53 mutation can elicit oncogenic activities 
besides the loss of tumor suppression function [36], pre-
vious studies have explored the predictive role of TP53 

in NSCLC with chemotherapy treatment, but the results 
were inconsistent. In a 253-patient study, the presence of 
TP53 mutation showed as an approval factor in response 
from chemotherapy [37], while a study with 35 patients 
indicated that mutant TP53 associated with resistance to 
chemotherapy [38], another report involving 524 patients 
found that no correlation of TP53 mutation with clinical 
chemotherapy responses [39]. Further investigations are 
needed to improve assessment of the prognostic value 
of TP53 in chemotherapy treatment. ROBO2 gene was 
considered as a tumor-suppressor gene in multiple can-
cers [24, 40, 41], but this effect could be weakened by 
mutation [26]. Another study found that mutation in the 
fibronectin and intracellular region of ROBO may signifi-
cantly affect the function, and further facilitate disease 
progression and confer a worse clinical outcome. ROBO2 
mutation may disrupt ROBO signaling, and cause cell 
growth imbalance and apoptosis, which further lead to 
progression and poorer prognosis. Our results indicate 
that ROBO2 may be a potential target in the treatment of 
NSCLC patients.

Moreover, besides gene mutation, several pathways 
were associated with chemotherapy treatment, and 
might be a potential drug target of lung cancer treatment. 
MAPK pathway comprised of the MAPK/ERK fam-
ily, Big MAP kinase-1(BMK-1), c-jun N-terminal kinase 
(JNK), and p38 signal families [42]. It is reported to be a 
critical pathway to human cancer survival, differentiation 
and drug resistance, its importance can be differentiated 
according to the origin of tissue [43]. Driver mutations 
(such as EGFR, KRAS and BRAF) have been identi-
fied in genes downstream of MAPK/ERK pathway. Our 
results demonstrated that more than half of the tumors 
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harbored MAPK activating mutation in adenocarcinoma, 
suggesting that MAPK signal pathway is also involved in 
the regulation of NSCLC chemotherapy. The PI3K/AKT/
MTOR signaling pathway also plays a key role in cancer 
biology, first generation MTOR inhibitors were approved 
for treatment of multiple cancer types, including renal, 
breast and some brain cancers [44]. Potential of this path-
way target has been identified for NSCLC chemother-
apy [45]. Our present study showed no much genomic 
alteration changes following chemotherapy treatment in 
PI3K/MTOR pathway, indicating that the combination of 
MTOR inhibitor and chemotherapy may be an effective 
therapeutic strategy for NSCLC. These findings under-
score the need for further research into the mechanisms 
and targeted therapy of MAPK and PI3K/MTOR signal 
pathway in NSCLC. Somatic alterations including EGFR, 
ALK, CDK12 were successfully identified, two of which 
are targetable by currently available drugs, these findings 
approved the usage of ctDNA for mutation detection and 
the potential targeted therapy in NSCLC patients receiv-
ing chemotherapy.

In addition, we analyzed the role of smoking in lung 
cancer. Smoking has been accounted for the develop-
ment of cancer for a long time and correlated with 87% of 
lung cancer deaths [46]. Our study showed non-smokers 
are more likely to benefit from Pemetrexed and cisplatin 
treatment than smokers, but not for Pemetrexed & car-
boplatin group, moreover, patients treated with Pem-
etrexed & cisplatin got a minimal survival benefit than 
Pemetrexed & carboplatin. In multiple analysis, TKI ther-
apy was significant with overall survival, all these impact 
on survival caused by smoking status/chemotherapy regi-
men/TKI therapy should be cognizant by the oncologists.

In conclusion, we explored the dynamic genomic 
changes in ctDNA in advanced NSCLC patients received 
chemotherapy, the results demonstrated the potential 
predictive role of mutation burden and a subset of genes, 
and underscored the need for additional studies to fur-
ther assess the biological mechanisms of MAPK and 
PI3K/MTOR pathway in chemotherapy. Moreover, this 
study gave a clue that non-smokers can better benefit 
from Pemetrexed and cisplatin treatment than smokers.
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